diff --git a/utils/datasets.py b/utils/datasets.py index b4e56ad..5fe4f7b 100644 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -1200,7 +1200,7 @@ def pastein(image, labels, sample_labels, sample_images, sample_masks): r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h)) temp_crop = image[ymin:ymin+r_h, xmin:xmin+r_w] m_ind = r_mask > 0 - if m_ind.astype(np.int).sum() > 60: + if m_ind.astype(np.int32).sum() > 60: temp_crop[m_ind] = r_image[m_ind] #print(sample_labels[sel_ind]) #print(sample_images[sel_ind].shape) diff --git a/utils/general.py b/utils/general.py index 6b7edb3..decdcc6 100644 --- a/utils/general.py +++ b/utils/general.py @@ -219,7 +219,7 @@ def labels_to_class_weights(labels, nc=80): return torch.Tensor() labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO - classes = labels[:, 0].astype(np.int) # labels = [class xywh] + classes = labels[:, 0].astype(np.int32) # labels = [class xywh] weights = np.bincount(classes, minlength=nc) # occurrences per class # Prepend gridpoint count (for uCE training) @@ -234,7 +234,7 @@ def labels_to_class_weights(labels, nc=80): def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): # Produces image weights based on class_weights and image contents - class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) + class_counts = np.array([np.bincount(x[:, 0].astype(np.int32), minlength=nc) for x in labels]) image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample return image_weights diff --git a/utils/loss.py b/utils/loss.py index a5b7288..2b1d968 100644 --- a/utils/loss.py +++ b/utils/loss.py @@ -739,7 +739,7 @@ class ComputeLossOTA: + 3.0 * pair_wise_iou_loss ) - matching_matrix = torch.zeros_like(cost, device="cpu") + matching_matrix = torch.zeros_like(cost, device=device) for gt_idx in range(num_gt): _, pos_idx = torch.topk(