mirror of https://github.com/WongKinYiu/yolov7.git
fix annotation txtx file creation
parent
a207844b1c
commit
5bb345f112
|
@ -1,6 +1,6 @@
|
|||
# parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple
|
||||
nc: 2 # number of classes
|
||||
depth_multiple: 1.0 # model depth multiple @@ HK TODO:
|
||||
width_multiple: 1.0 # layer channel multiple
|
||||
|
||||
# anchors
|
||||
|
|
|
@ -14,12 +14,12 @@ iou_t: 0.20 # IoU training threshold
|
|||
anchor_t: 4.0 # anchor-multiple threshold
|
||||
# anchors: 3 # anchors per output layer (0 to ignore)
|
||||
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
||||
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
||||
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
||||
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
||||
hsv_h: 0.0 # image HSV-Hue augmentation (fraction)
|
||||
hsv_s: 0.0 # image HSV-Saturation augmentation (fraction)
|
||||
hsv_v: 0.0 # image HSV-Value augmentation (fraction)
|
||||
degrees: 0.0 # image rotation (+/- deg)
|
||||
translate: 0.1 # image translation (+/- fraction)
|
||||
scale: 0.5 # image scale (+/- gain)
|
||||
translate: 0.0 # image translation (+/- fraction)
|
||||
scale: 0.0 # image scale (+/- gain)
|
||||
shear: 0.0 # image shear (+/- deg)
|
||||
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
||||
flipud: 0.0 # image flip up-down (probability)
|
||||
|
|
|
@ -194,3 +194,7 @@ if __name__ == '__main__':
|
|||
strip_optimizer(opt.weights)
|
||||
else:
|
||||
detect()
|
||||
|
||||
"""
|
||||
python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg
|
||||
"""
|
5
train.py
5
train.py
|
@ -703,3 +703,8 @@ if __name__ == '__main__':
|
|||
plot_evolution(yaml_file)
|
||||
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
|
||||
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
|
||||
|
||||
|
||||
"""
|
||||
python train.py --workers 8 --device 'cpu' --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights 'v7' --name yolov7 --hyp data/hyp.scratch.p5.yaml
|
||||
"""
|
|
@ -558,6 +558,8 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
|
||||
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
|
||||
parser.add_argument('--v5-metric', action='store_true', help='assume maximum recall as 1.0 in AP calculation')
|
||||
parser.add_argument('--tir-od', action='store_true', help='TIR Object Detection')
|
||||
|
||||
opt = parser.parse_args()
|
||||
|
||||
# Set DDP variables
|
||||
|
@ -697,3 +699,10 @@ if __name__ == '__main__':
|
|||
plot_evolution(yaml_file)
|
||||
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
|
||||
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
|
||||
|
||||
|
||||
"""
|
||||
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
|
||||
|
||||
|
||||
"""
|
|
@ -29,7 +29,7 @@ from torchvision.ops import roi_pool, roi_align, ps_roi_pool, ps_roi_align
|
|||
from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
|
||||
resample_segments, clean_str
|
||||
from utils.torch_utils import torch_distributed_zero_first
|
||||
|
||||
# @@HK : pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 resolve h\lib\fbgemm.dll" or one of its dependencies on Windows
|
||||
# Parameters
|
||||
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
||||
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
|
||||
|
@ -358,7 +358,7 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
self.hyp = hyp
|
||||
self.image_weights = image_weights
|
||||
self.rect = False if image_weights else rect
|
||||
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
||||
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) @@ HK TODO: disable mosaic
|
||||
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
||||
self.stride = stride
|
||||
self.path = path
|
||||
|
@ -570,12 +570,13 @@ class LoadImagesAndLabels(Dataset): # for training/testing
|
|||
if self.augment:
|
||||
# Augment imagespace
|
||||
if not mosaic:
|
||||
img, labels = random_perspective(img, labels,
|
||||
degrees=hyp['degrees'],
|
||||
translate=hyp['translate'],
|
||||
scale=hyp['scale'],
|
||||
shear=hyp['shear'],
|
||||
perspective=hyp['perspective'])
|
||||
if not hyp['tir_od']:
|
||||
img, labels = random_perspective(img, labels,
|
||||
degrees=hyp['degrees'],
|
||||
translate=hyp['translate'],
|
||||
scale=hyp['scale'],
|
||||
shear=hyp['shear'],
|
||||
perspective=hyp['perspective'])
|
||||
|
||||
|
||||
#img, labels = self.albumentations(img, labels)
|
||||
|
|
Loading…
Reference in New Issue