diff --git a/data/hyp.scratch.custom.yaml b/data/hyp.scratch.custom.yaml index 92b50d3..8570d73 100644 --- a/data/hyp.scratch.custom.yaml +++ b/data/hyp.scratch.custom.yaml @@ -27,4 +27,5 @@ fliplr: 0.5 # image flip left-right (probability) mosaic: 1.0 # image mosaic (probability) mixup: 0.0 # image mixup (probability) copy_paste: 0.0 # image copy paste (probability) -paste_in: 0.0 # image copy paste (probability) +paste_in: 0.0 # image copy paste (probability), use 0 for faster training +loss_ota: 1 # use ComputeLossOTA, use 0 for faster training \ No newline at end of file diff --git a/data/hyp.scratch.p5.yaml b/data/hyp.scratch.p5.yaml index a64c404..a409bac 100644 --- a/data/hyp.scratch.p5.yaml +++ b/data/hyp.scratch.p5.yaml @@ -27,4 +27,5 @@ fliplr: 0.5 # image flip left-right (probability) mosaic: 1.0 # image mosaic (probability) mixup: 0.15 # image mixup (probability) copy_paste: 0.0 # image copy paste (probability) -paste_in: 0.15 # image copy paste (probability) +paste_in: 0.15 # image copy paste (probability), use 0 for faster training +loss_ota: 1 # use ComputeLossOTA, use 0 for faster training \ No newline at end of file diff --git a/data/hyp.scratch.p6.yaml b/data/hyp.scratch.p6.yaml index 6ab7c01..192d0d5 100644 --- a/data/hyp.scratch.p6.yaml +++ b/data/hyp.scratch.p6.yaml @@ -27,4 +27,5 @@ fliplr: 0.5 # image flip left-right (probability) mosaic: 1.0 # image mosaic (probability) mixup: 0.15 # image mixup (probability) copy_paste: 0.0 # image copy paste (probability) -paste_in: 0.15 # image copy paste (probability) +paste_in: 0.15 # image copy paste (probability), use 0 for faster training +loss_ota: 1 # use ComputeLossOTA, use 0 for faster training \ No newline at end of file diff --git a/data/hyp.scratch.tiny.yaml b/data/hyp.scratch.tiny.yaml index 01c6f49..b0dc14a 100644 --- a/data/hyp.scratch.tiny.yaml +++ b/data/hyp.scratch.tiny.yaml @@ -27,4 +27,5 @@ fliplr: 0.5 # image flip left-right (probability) mosaic: 1.0 # image mosaic (probability) mixup: 0.05 # image mixup (probability) copy_paste: 0.0 # image copy paste (probability) -paste_in: 0.05 # image copy paste (probability) +paste_in: 0.05 # image copy paste (probability), use 0 for faster training +loss_ota: 1 # use ComputeLossOTA, use 0 for faster training diff --git a/train.py b/train.py index c6db018..2864636 100644 --- a/train.py +++ b/train.py @@ -359,7 +359,10 @@ def train(hyp, opt, device, tb_writer=None): # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward - loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size + if hyp['loss_ota'] == 1: + loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size + else: + loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if rank != -1: loss *= opt.world_size # gradient averaged between devices in DDP mode if opt.quad: