mirror of https://github.com/WongKinYiu/yolov7.git
End2end (#61)
* export end2end onnx model * fixbug * add web demo (#58) * Update README.md * main code update yolov7-tiny deploy cfg * main code update yolov7-tiny training cfg * main code @liguagua752109150 https://github.com/WongKinYiu/yolov7/issues/33#issuecomment-1178669212 * main code @albertfaromatics https://github.com/WongKinYiu/yolov7/issues/35#issuecomment-1178800685 * main code update link * main code add custom hyp * main code update default activation function * main code update path * main figure add more tasks * main code update readme * main code update reparameterization * Update README.md * main code update readme * main code update aux training * main code update aux training * main code update aux training * main figure update yolov7 prediction * main code update readme * main code rename * main code rename * main code rename * main code rename * main code update readme * main code update visualization * main code fix gain for train_aux * main code update loss * main code update instance segmentation demo * main code update keypoint detection demo * main code update pose demo * main code update pose * main code update pose * main code update pose * main code update pose * main code update trace * Update README.md * main code fix ciou * main code fix nan of aux training https://github.com/WongKinYiu/yolov7/issues/250#issue-1312356380 @hudingding * support onnx to tensorrt convert (#114) * fuse IDetect (#148) * Fixes #199 (#203) * minor fix * resolve conflict * resolve conflict * resolve conflict * resolve conflict * resolve conflict * resolve * resolve * resolve * resolve Co-authored-by: AK391 <81195143+AK391@users.noreply.github.com> Co-authored-by: Alexey <AlexeyAB@users.noreply.github.com> Co-authored-by: Kin-Yiu, Wong <102582011@cc.ncu.edu.tw> Co-authored-by: linghu8812 <36389436+linghu8812@users.noreply.github.com> Co-authored-by: Alexander <84590713+SashaAlderson@users.noreply.github.com> Co-authored-by: Ben Raymond <ben@theraymonds.org> Co-authored-by: AlexeyAB84 <alexeyab84@gmail.com>pull/280/head
parent
2596994f39
commit
afdc86f519
|
@ -0,0 +1,3 @@
|
|||
# 默认忽略的文件
|
||||
/shelf/
|
||||
/workspace.xml
|
|
@ -0,0 +1,46 @@
|
|||
<component name="InspectionProjectProfileManager">
|
||||
<profile version="1.0">
|
||||
<option name="myName" value="Project Default" />
|
||||
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
||||
<option name="ignoredPackages">
|
||||
<value>
|
||||
<list size="18">
|
||||
<item index="0" class="java.lang.String" itemvalue="onnxruntime" />
|
||||
<item index="1" class="java.lang.String" itemvalue="onnx-simplifier" />
|
||||
<item index="2" class="java.lang.String" itemvalue="scipy" />
|
||||
<item index="3" class="java.lang.String" itemvalue="thop" />
|
||||
<item index="4" class="java.lang.String" itemvalue="opencv-python" />
|
||||
<item index="5" class="java.lang.String" itemvalue="torch" />
|
||||
<item index="6" class="java.lang.String" itemvalue="numpy" />
|
||||
<item index="7" class="java.lang.String" itemvalue="torchvision" />
|
||||
<item index="8" class="java.lang.String" itemvalue="tqdm" />
|
||||
<item index="9" class="java.lang.String" itemvalue="pandas" />
|
||||
<item index="10" class="java.lang.String" itemvalue="tensorboard" />
|
||||
<item index="11" class="java.lang.String" itemvalue="seaborn" />
|
||||
<item index="12" class="java.lang.String" itemvalue="matplotlib" />
|
||||
<item index="13" class="java.lang.String" itemvalue="Cython" />
|
||||
<item index="14" class="java.lang.String" itemvalue="pycocotools" />
|
||||
<item index="15" class="java.lang.String" itemvalue="h5py" />
|
||||
<item index="16" class="java.lang.String" itemvalue="opencv_python" />
|
||||
<item index="17" class="java.lang.String" itemvalue="Pillow" />
|
||||
</list>
|
||||
</value>
|
||||
</option>
|
||||
</inspection_tool>
|
||||
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
||||
<option name="ignoredErrors">
|
||||
<list>
|
||||
<option value="N806" />
|
||||
<option value="N801" />
|
||||
</list>
|
||||
</option>
|
||||
</inspection_tool>
|
||||
<inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
||||
<option name="ignoredIdentifiers">
|
||||
<list>
|
||||
<option value="tkinter.*" />
|
||||
</list>
|
||||
</option>
|
||||
</inspection_tool>
|
||||
</profile>
|
||||
</component>
|
|
@ -0,0 +1,6 @@
|
|||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
|
@ -0,0 +1,4 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8" project-jdk-type="Python SDK" />
|
||||
</project>
|
|
@ -0,0 +1,8 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/yolov7.iml" filepath="$PROJECT_DIR$/.idea/yolov7.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
|
@ -0,0 +1,6 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
|
@ -0,0 +1,12 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="PyDocumentationSettings">
|
||||
<option name="format" value="PLAIN" />
|
||||
<option name="myDocStringFormat" value="Plain" />
|
||||
</component>
|
||||
</module>
|
|
@ -151,6 +151,13 @@ python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inferen
|
|||
</a>
|
||||
</div>
|
||||
|
||||
|
||||
## Export
|
||||
Use the args `--include-nms` can to export end to end onnx model which include the `EfficientNMS`.
|
||||
```shell
|
||||
python models/export.py --weights yolov7.pt --grid --include-nms
|
||||
```
|
||||
|
||||
## Citation
|
||||
|
||||
```
|
||||
|
|
33
export.py
33
export.py
|
@ -12,6 +12,7 @@ from models.experimental import attempt_load
|
|||
from utils.activations import Hardswish, SiLU
|
||||
from utils.general import set_logging, check_img_size
|
||||
from utils.torch_utils import select_device
|
||||
from utils.add_nms import RegisterNMS
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
|
@ -22,6 +23,7 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
|
||||
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||
parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
|
||||
parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
|
||||
opt = parser.parse_args()
|
||||
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
||||
print(opt)
|
||||
|
@ -52,7 +54,9 @@ if __name__ == '__main__':
|
|||
# m.forward = m.forward_export # assign forward (optional)
|
||||
model.model[-1].export = not opt.grid # set Detect() layer grid export
|
||||
y = model(img) # dry run
|
||||
|
||||
if opt.include_nms:
|
||||
model.model[-1].include_nms = True
|
||||
y = None
|
||||
# TorchScript export
|
||||
try:
|
||||
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
||||
|
@ -75,16 +79,23 @@ if __name__ == '__main__':
|
|||
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
|
||||
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
|
||||
|
||||
# Checks
|
||||
onnx_model = onnx.load(f) # load onnx model
|
||||
onnx.checker.check_model(onnx_model) # check onnx model
|
||||
if opt.include_nms:
|
||||
print('Registering NMS plugin...')
|
||||
mo = RegisterNMS(f)
|
||||
mo.register_nms()
|
||||
mo.save(f)
|
||||
else:
|
||||
# Checks
|
||||
onnx_model = onnx.load(f) # load onnx model
|
||||
onnx.checker.check_model(onnx_model) # check onnx model
|
||||
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
||||
|
||||
# # Metadata
|
||||
# d = {'stride': int(max(model.stride))}
|
||||
# for k, v in d.items():
|
||||
# meta = onnx_model.metadata_props.add()
|
||||
# meta.key, meta.value = k, str(v)
|
||||
# onnx.save(onnx_model, f)
|
||||
# # Metadata
|
||||
# d = {'stride': int(max(model.stride))}
|
||||
# for k, v in d.items():
|
||||
# meta = onnx_model.metadata_props.add()
|
||||
# meta.key, meta.value = k, str(v)
|
||||
# onnx.save(onnx_model, f)
|
||||
|
||||
if opt.simplify:
|
||||
try:
|
||||
|
@ -95,11 +106,9 @@ if __name__ == '__main__':
|
|||
assert check, 'assert check failed'
|
||||
except Exception as e:
|
||||
print(f'Simplifier failure: {e}')
|
||||
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
||||
print('ONNX export success, saved as %s' % f)
|
||||
except Exception as e:
|
||||
print('ONNX export failure: %s' % e)
|
||||
|
||||
# CoreML export
|
||||
try:
|
||||
import coremltools as ct
|
||||
|
|
|
@ -236,7 +236,7 @@ class Res(nn.Module):
|
|||
class ResX(Res):
|
||||
# ResNet bottleneck
|
||||
def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
||||
super().__init__(c1, c2, shortcu, g, e)
|
||||
super().__init__(c1, c2, shortcut, g, e)
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
|
||||
|
||||
|
|
|
@ -5,7 +5,7 @@ from copy import deepcopy
|
|||
|
||||
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import torch
|
||||
from models.common import *
|
||||
from models.experimental import *
|
||||
from utils.autoanchor import check_anchor_order
|
||||
|
@ -23,7 +23,7 @@ except ImportError:
|
|||
class Detect(nn.Module):
|
||||
stride = None # strides computed during build
|
||||
export = False # onnx export
|
||||
|
||||
include_nms = False
|
||||
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
||||
super(Detect, self).__init__()
|
||||
self.nc = nc # number of classes
|
||||
|
@ -48,7 +48,6 @@ class Detect(nn.Module):
|
|||
if not self.training: # inference
|
||||
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
||||
|
||||
y = x[i].sigmoid()
|
||||
if not torch.onnx.is_in_onnx_export():
|
||||
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
||||
|
@ -59,13 +58,28 @@ class Detect(nn.Module):
|
|||
y = torch.cat((xy, wh, y[..., 4:]), -1)
|
||||
z.append(y.view(bs, -1, self.no))
|
||||
|
||||
return x if self.training else (torch.cat(z, 1), x)
|
||||
if self.include_nms:
|
||||
z = self.convert(z)
|
||||
|
||||
return x if self.training else (z, ) if self.include_nms else (torch.cat(z, 1), x)
|
||||
|
||||
@staticmethod
|
||||
def _make_grid(nx=20, ny=20):
|
||||
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
||||
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
||||
|
||||
def convert(self, z):
|
||||
z = torch.cat(z, 1)
|
||||
box = z[:, :, :4]
|
||||
conf = z[:, :, 4:5]
|
||||
score = z[:, :, 5:]
|
||||
score *= conf
|
||||
convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
|
||||
dtype=torch.float32,
|
||||
device=z.device)
|
||||
box @= convert_matrix
|
||||
return (box, score)
|
||||
|
||||
|
||||
class IDetect(nn.Module):
|
||||
stride = None # strides computed during build
|
||||
|
|
|
@ -0,0 +1,151 @@
|
|||
import numpy as np
|
||||
import onnx
|
||||
from onnx import shape_inference
|
||||
import onnx_graphsurgeon as gs
|
||||
import logging
|
||||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
class RegisterNMS(object):
|
||||
def __init__(
|
||||
self,
|
||||
onnx_model_path: str,
|
||||
precision: str = "fp32",
|
||||
):
|
||||
|
||||
self.graph = gs.import_onnx(onnx.load(onnx_model_path))
|
||||
assert self.graph
|
||||
LOGGER.info("ONNX graph created successfully")
|
||||
# Fold constants via ONNX-GS that PyTorch2ONNX may have missed
|
||||
self.graph.fold_constants()
|
||||
self.precision = precision
|
||||
self.batch_size = 1
|
||||
def infer(self):
|
||||
"""
|
||||
Sanitize the graph by cleaning any unconnected nodes, do a topological resort,
|
||||
and fold constant inputs values. When possible, run shape inference on the
|
||||
ONNX graph to determine tensor shapes.
|
||||
"""
|
||||
for _ in range(3):
|
||||
count_before = len(self.graph.nodes)
|
||||
|
||||
self.graph.cleanup().toposort()
|
||||
try:
|
||||
for node in self.graph.nodes:
|
||||
for o in node.outputs:
|
||||
o.shape = None
|
||||
model = gs.export_onnx(self.graph)
|
||||
model = shape_inference.infer_shapes(model)
|
||||
self.graph = gs.import_onnx(model)
|
||||
except Exception as e:
|
||||
LOGGER.info(f"Shape inference could not be performed at this time:\n{e}")
|
||||
try:
|
||||
self.graph.fold_constants(fold_shapes=True)
|
||||
except TypeError as e:
|
||||
LOGGER.error(
|
||||
"This version of ONNX GraphSurgeon does not support folding shapes, "
|
||||
f"please upgrade your onnx_graphsurgeon module. Error:\n{e}"
|
||||
)
|
||||
raise
|
||||
|
||||
count_after = len(self.graph.nodes)
|
||||
if count_before == count_after:
|
||||
# No new folding occurred in this iteration, so we can stop for now.
|
||||
break
|
||||
|
||||
def save(self, output_path):
|
||||
"""
|
||||
Save the ONNX model to the given location.
|
||||
Args:
|
||||
output_path: Path pointing to the location where to write
|
||||
out the updated ONNX model.
|
||||
"""
|
||||
self.graph.cleanup().toposort()
|
||||
model = gs.export_onnx(self.graph)
|
||||
onnx.save(model, output_path)
|
||||
LOGGER.info(f"Saved ONNX model to {output_path}")
|
||||
|
||||
def register_nms(
|
||||
self,
|
||||
*,
|
||||
score_thresh: float = 0.25,
|
||||
nms_thresh: float = 0.45,
|
||||
detections_per_img: int = 100,
|
||||
):
|
||||
"""
|
||||
Register the ``EfficientNMS_TRT`` plugin node.
|
||||
NMS expects these shapes for its input tensors:
|
||||
- box_net: [batch_size, number_boxes, 4]
|
||||
- class_net: [batch_size, number_boxes, number_labels]
|
||||
Args:
|
||||
score_thresh (float): The scalar threshold for score (low scoring boxes are removed).
|
||||
nms_thresh (float): The scalar threshold for IOU (new boxes that have high IOU
|
||||
overlap with previously selected boxes are removed).
|
||||
detections_per_img (int): Number of best detections to keep after NMS.
|
||||
"""
|
||||
|
||||
self.infer()
|
||||
# Find the concat node at the end of the network
|
||||
op_inputs = self.graph.outputs
|
||||
op = "EfficientNMS_TRT"
|
||||
attrs = {
|
||||
"plugin_version": "1",
|
||||
"background_class": -1, # no background class
|
||||
"max_output_boxes": detections_per_img,
|
||||
"score_threshold": score_thresh,
|
||||
"iou_threshold": nms_thresh,
|
||||
"score_activation": False,
|
||||
"box_coding": 0,
|
||||
}
|
||||
|
||||
if self.precision == "fp32":
|
||||
dtype_output = np.float32
|
||||
elif self.precision == "fp16":
|
||||
dtype_output = np.float16
|
||||
else:
|
||||
raise NotImplementedError(f"Currently not supports precision: {self.precision}")
|
||||
|
||||
# NMS Outputs
|
||||
output_num_detections = gs.Variable(
|
||||
name="num_detections",
|
||||
dtype=np.int32,
|
||||
shape=[self.batch_size, 1],
|
||||
) # A scalar indicating the number of valid detections per batch image.
|
||||
output_boxes = gs.Variable(
|
||||
name="detection_boxes",
|
||||
dtype=dtype_output,
|
||||
shape=[self.batch_size, detections_per_img, 4],
|
||||
)
|
||||
output_scores = gs.Variable(
|
||||
name="detection_scores",
|
||||
dtype=dtype_output,
|
||||
shape=[self.batch_size, detections_per_img],
|
||||
)
|
||||
output_labels = gs.Variable(
|
||||
name="detection_classes",
|
||||
dtype=np.int32,
|
||||
shape=[self.batch_size, detections_per_img],
|
||||
)
|
||||
|
||||
op_outputs = [output_num_detections, output_boxes, output_scores, output_labels]
|
||||
|
||||
# Create the NMS Plugin node with the selected inputs. The outputs of the node will also
|
||||
# become the final outputs of the graph.
|
||||
self.graph.layer(op=op, name="batched_nms", inputs=op_inputs, outputs=op_outputs, attrs=attrs)
|
||||
LOGGER.info(f"Created NMS plugin '{op}' with attributes: {attrs}")
|
||||
|
||||
self.graph.outputs = op_outputs
|
||||
|
||||
self.infer()
|
||||
|
||||
def save(self, output_path):
|
||||
"""
|
||||
Save the ONNX model to the given location.
|
||||
Args:
|
||||
output_path: Path pointing to the location where to write
|
||||
out the updated ONNX model.
|
||||
"""
|
||||
self.graph.cleanup().toposort()
|
||||
model = gs.export_onnx(self.graph)
|
||||
onnx.save(model, output_path)
|
||||
LOGGER.info(f"Saved ONNX model to {output_path}")
|
Loading…
Reference in New Issue