diff --git a/utils/general.py b/utils/general.py index faf908f..bb33751 100644 --- a/utils/general.py +++ b/utils/general.py @@ -22,6 +22,14 @@ from utils.google_utils import gsutil_getsize from utils.metrics import fitness from utils.torch_utils import init_torch_seeds +from utils.torch_utils import is_parallel +from torch.nn import functional as F +from detectron2.structures.masks import BitMasks +from detectron2.structures import Boxes +from detectron2.layers.roi_align import ROIAlign +from detectron2.utils.memory import retry_if_cuda_oom +from detectron2.layers import paste_masks_in_image + # Settings torch.set_printoptions(linewidth=320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 @@ -43,6 +51,24 @@ def init_seeds(seed=0): init_torch_seeds(seed) +def merge_bases(rois, coeffs, attn_r, num_b, location_to_inds=None): + # merge predictions + # N = coeffs.size(0) + if location_to_inds is not None: + rois = rois[location_to_inds] + N, B, H, W = rois.size() + if coeffs.dim() != 4: + coeffs = coeffs.view(N, num_b, attn_r, attn_r) + # NA = coeffs.shape[1] // B + coeffs = F.interpolate(coeffs, (H, W), + mode="bilinear").softmax(dim=1) + # coeffs = coeffs.view(N, -1, B, H, W) + # rois = rois[:, None, ...].repeat(1, NA, 1, 1, 1) + # masks_preds, _ = (rois * coeffs).sum(dim=2) # c.max(dim=1) + masks_preds = (rois * coeffs).sum(dim=1) + return masks_preds + + def get_latest_run(search_dir='.'): # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) @@ -795,6 +821,122 @@ def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes return output +def non_max_suppression_mask_conf(prediction, attn, bases, pooler, hyp, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False, mask_iou=None, vote=False): + + if prediction.dtype is torch.float16: + prediction = prediction.float() # to FP32 + nc = prediction[0].shape[1] - 5 # number of classes + xc = prediction[..., 4] > conf_thres # candidates + # Settings + min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height + max_det = 300 # maximum number of detections per image + time_limit = 10.0 # seconds to quit after + redundant = True # require redundant detections + multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img) + + t = time.time() + output = [None] * prediction.shape[0] + output_mask = [None] * prediction.shape[0] + output_mask_score = [None] * prediction.shape[0] + output_ac = [None] * prediction.shape[0] + output_ab = [None] * prediction.shape[0] + + def RMS_contrast(masks): + mu = torch.mean(masks, dim=-1, keepdim=True) + return torch.sqrt(torch.mean((masks - mu)**2, dim=-1, keepdim=True)) + + + for xi, x in enumerate(prediction): # image index, image inference + # Apply constraints + # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height + x = x[xc[xi]] # confidence + # Box (center x, center y, width, height) to (x1, y1, x2, y2) + box = xywh2xyxy(x[:, :4]) + + # If none remain process next image + if not x.shape[0]: + continue + + a = attn[xi][xc[xi]] + base = bases[xi] + + bboxes = Boxes(box) + pooled_bases = pooler([base[None]], [bboxes]) + + pred_masks = merge_bases(pooled_bases, a, hyp["attn_resolution"], hyp["num_base"]).view(a.shape[0], -1).sigmoid() + + if mask_iou is not None: + mask_score = mask_iou[xi][xc[xi]][..., None] + else: + temp = pred_masks.clone() + temp[temp < 0.5] = 1 - temp[temp < 0.5] + mask_score = torch.exp(torch.log(temp).mean(dim=-1, keepdims=True))#torch.mean(temp, dim=-1, keepdims=True) + + x[:, 5:] *= x[:, 4:5] * mask_score # x[:, 4:5] * * mask_conf * non_mask_conf # conf = obj_conf * cls_conf + + if multi_label: + i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T + x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) + mask_score = mask_score[i] + if attn is not None: + pred_masks = pred_masks[i] + else: # best class only + conf, j = x[:, 5:].max(1, keepdim=True) + x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] + + # Filter by class + if classes: + x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] + + + # If none remain process next image + n = x.shape[0] # number of boxes + if not n: + continue + + # Batched NMS + c = x[:, 5:6] * (0 if agnostic else max_wh) # classes + boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores + # scores *= mask_score + i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) + if i.shape[0] > max_det: # limit detections + i = i[:max_det] + + + all_candidates = [] + all_boxes = [] + if vote: + ious = box_iou(boxes[i], boxes) > iou_thres + for iou in ious: + selected_masks = pred_masks[iou] + k = min(10, selected_masks.shape[0]) + _, tfive = torch.topk(scores[iou], k) + all_candidates.append(pred_masks[iou][tfive]) + all_boxes.append(x[iou, :4][tfive]) + #exit() + + if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) + try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) + iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix + weights = iou * scores[None] # box weights + x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes + if redundant: + i = i[iou.sum(1) > 1] # require redundancy + except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139 + print(x, i, x.shape, i.shape) + pass + + output[xi] = x[i] + output_mask_score[xi] = mask_score[i] + output_ac[xi] = all_candidates + output_ab[xi] = all_boxes + if attn is not None: + output_mask[xi] = pred_masks[i] + if (time.time() - t) > time_limit: + break # time limit exceeded + + return output, output_mask, output_mask_score, output_ac, output_ab + def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() # Strip optimizer from 'f' to finalize training, optionally save as 's'