diff --git a/utils/general.py b/utils/general.py
index faf908f..bb33751 100644
--- a/utils/general.py
+++ b/utils/general.py
@@ -22,6 +22,14 @@ from utils.google_utils import gsutil_getsize
 from utils.metrics import fitness
 from utils.torch_utils import init_torch_seeds
 
+from utils.torch_utils import is_parallel
+from torch.nn import functional as F
+from detectron2.structures.masks import BitMasks
+from detectron2.structures import Boxes
+from detectron2.layers.roi_align import ROIAlign
+from detectron2.utils.memory import retry_if_cuda_oom
+from detectron2.layers import paste_masks_in_image
+
 # Settings
 torch.set_printoptions(linewidth=320, precision=5, profile='long')
 np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
@@ -43,6 +51,24 @@ def init_seeds(seed=0):
     init_torch_seeds(seed)
 
 
+def merge_bases(rois, coeffs, attn_r, num_b, location_to_inds=None):
+    # merge predictions
+    # N = coeffs.size(0)
+    if location_to_inds is not None:
+        rois = rois[location_to_inds]
+    N, B, H, W = rois.size()
+    if coeffs.dim() != 4:
+        coeffs = coeffs.view(N, num_b, attn_r, attn_r)
+    # NA = coeffs.shape[1] //  B
+    coeffs = F.interpolate(coeffs, (H, W),
+                           mode="bilinear").softmax(dim=1)
+    # coeffs = coeffs.view(N, -1, B, H, W)
+    # rois = rois[:, None, ...].repeat(1, NA, 1, 1, 1)
+    # masks_preds, _ = (rois * coeffs).sum(dim=2) # c.max(dim=1)
+    masks_preds = (rois * coeffs).sum(dim=1)
+    return masks_preds
+
+
 def get_latest_run(search_dir='.'):
     # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
     last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
@@ -795,6 +821,122 @@ def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes
 
     return output
 
+def non_max_suppression_mask_conf(prediction, attn, bases, pooler, hyp, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False, mask_iou=None, vote=False):
+
+    if prediction.dtype is torch.float16:
+        prediction = prediction.float()  # to FP32
+    nc = prediction[0].shape[1] - 5  # number of classes
+    xc = prediction[..., 4] > conf_thres  # candidates
+    # Settings
+    min_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and height
+    max_det = 300  # maximum number of detections per image
+    time_limit = 10.0  # seconds to quit after
+    redundant = True  # require redundant detections
+    multi_label = nc > 1  # multiple labels per box (adds 0.5ms/img)
+
+    t = time.time()
+    output = [None] * prediction.shape[0]
+    output_mask = [None] * prediction.shape[0]
+    output_mask_score = [None] * prediction.shape[0]
+    output_ac = [None] * prediction.shape[0]
+    output_ab = [None] * prediction.shape[0]
+    
+    def RMS_contrast(masks):
+        mu = torch.mean(masks, dim=-1, keepdim=True)
+        return torch.sqrt(torch.mean((masks - mu)**2, dim=-1, keepdim=True))
+    
+    
+    for xi, x in enumerate(prediction):  # image index, image inference
+        # Apply constraints
+        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
+        x = x[xc[xi]]  # confidence
+        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
+        box = xywh2xyxy(x[:, :4])
+        
+        # If none remain process next image
+        if not x.shape[0]:
+            continue
+            
+        a = attn[xi][xc[xi]]
+        base = bases[xi]
+
+        bboxes = Boxes(box)
+        pooled_bases = pooler([base[None]], [bboxes])
+        
+        pred_masks = merge_bases(pooled_bases, a, hyp["attn_resolution"], hyp["num_base"]).view(a.shape[0], -1).sigmoid()
+
+        if mask_iou is not None:
+            mask_score = mask_iou[xi][xc[xi]][..., None]
+        else:
+            temp = pred_masks.clone()
+            temp[temp < 0.5] = 1 - temp[temp < 0.5]
+            mask_score = torch.exp(torch.log(temp).mean(dim=-1, keepdims=True))#torch.mean(temp, dim=-1, keepdims=True)
+        
+        x[:, 5:] *= x[:, 4:5] * mask_score # x[:, 4:5] *   * mask_conf * non_mask_conf  # conf = obj_conf * cls_conf
+
+        if multi_label:
+            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
+            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
+            mask_score = mask_score[i]
+            if attn is not None:    
+                pred_masks = pred_masks[i]
+        else:  # best class only
+            conf, j = x[:, 5:].max(1, keepdim=True)
+            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
+
+        # Filter by class
+        if classes:
+            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+
+        # If none remain process next image
+        n = x.shape[0]  # number of boxes
+        if not n:
+            continue
+        
+        # Batched NMS
+        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
+        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
+        # scores *= mask_score
+        i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
+        if i.shape[0] > max_det:  # limit detections
+            i = i[:max_det]
+            
+        
+        all_candidates = []
+        all_boxes = []
+        if vote:
+            ious = box_iou(boxes[i], boxes) > iou_thres
+            for iou in ious: 
+                selected_masks = pred_masks[iou]
+                k = min(10, selected_masks.shape[0])
+                _, tfive = torch.topk(scores[iou], k)
+                all_candidates.append(pred_masks[iou][tfive])
+                all_boxes.append(x[iou, :4][tfive])
+        #exit()
+            
+        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
+            try:  # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+                iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
+                weights = iou * scores[None]  # box weights
+                x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
+                if redundant:
+                    i = i[iou.sum(1) > 1]  # require redundancy
+            except:  # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139
+                print(x, i, x.shape, i.shape)
+                pass
+
+        output[xi] = x[i]
+        output_mask_score[xi] = mask_score[i]
+        output_ac[xi] = all_candidates
+        output_ab[xi] = all_boxes
+        if attn is not None:
+            output_mask[xi] = pred_masks[i]
+        if (time.time() - t) > time_limit:
+            break  # time limit exceeded
+
+    return output, output_mask, output_mask_score, output_ac, output_ab
+
 
 def strip_optimizer(f='best.pt', s=''):  # from utils.general import *; strip_optimizer()
     # Strip optimizer from 'f' to finalize training, optionally save as 's'