mirror of https://github.com/WongKinYiu/yolov7.git
Add missing TF layers (#792)
Add following layers to tf.py: - TFMP (MP) - TFSPPCSPC (SPPCSPC) - TFRepConv (RepConv)u5
parent
a6215c0dbb
commit
f2439f894c
67
models/tf.py
67
models/tf.py
|
@ -27,8 +27,8 @@ import torch
|
|||
import torch.nn as nn
|
||||
from tensorflow import keras
|
||||
|
||||
from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
|
||||
DWConvTranspose2d, Focus, autopad)
|
||||
from models.common import (C3, MP, SPP, SPPF, SPPCSPC, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
|
||||
RepConv, DWConvTranspose2d, Focus, autopad)
|
||||
from models.experimental import MixConv2d, attempt_load
|
||||
from models.yolo import Detect
|
||||
from utils.activations import SiLU
|
||||
|
@ -86,6 +86,36 @@ class TFConv(keras.layers.Layer):
|
|||
def call(self, inputs):
|
||||
return self.act(self.bn(self.conv(inputs)))
|
||||
|
||||
class TFRepConv(keras.layers.Layer):
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, w=None):
|
||||
super().__init__()
|
||||
|
||||
|
||||
self.groups = g
|
||||
self.in_channels = c1
|
||||
self.out_channels = c2
|
||||
|
||||
assert k == 3
|
||||
assert autopad(k, p) == 1
|
||||
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
||||
|
||||
padding_11 = autopad(k, p) - k // 2
|
||||
|
||||
self.act = activations(w.act) if act else tf.identity
|
||||
rbr_reparam = keras.layers.Conv2D(
|
||||
filters=c2,
|
||||
kernel_size=k,
|
||||
strides=s,
|
||||
padding='SAME' if s == 1 else 'VALID',
|
||||
use_bias=True,
|
||||
kernel_initializer=keras.initializers.Constant(w.rbr_reparam.weight.permute(2, 3, 1, 0).numpy()),
|
||||
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.rbr_reparam.bias.numpy()))
|
||||
self.rbr_reparam = rbr_reparam if s == 1 else keras.Sequential([TFPad(autopad(k, p)), rbr_reparam])
|
||||
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
||||
|
||||
def call(self, inputs):
|
||||
return self.act(self.bn(self.rbr_reparam(inputs)))
|
||||
|
||||
class TFDWConv(keras.layers.Layer):
|
||||
# Depthwise convolution
|
||||
|
@ -239,6 +269,14 @@ class TFC3x(keras.layers.Layer):
|
|||
def call(self, inputs):
|
||||
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
||||
|
||||
class TFMP(keras.layers.Layer):
|
||||
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||||
def __init__(self, k=2, w=None):
|
||||
super().__init__()
|
||||
self.m = keras.layers.MaxPooling2D(pool_size=2, strides=2, padding='VALID')
|
||||
|
||||
def call(self, inputs):
|
||||
return self.m(inputs)
|
||||
|
||||
class TFSPP(keras.layers.Layer):
|
||||
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||||
|
@ -269,6 +307,24 @@ class TFSPPF(keras.layers.Layer):
|
|||
y2 = self.m(y1)
|
||||
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
|
||||
|
||||
class TFSPPCSPC(keras.layers.Layer):
|
||||
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13), w=None):
|
||||
super().__init__()
|
||||
c_ = int(2 * c2 * e) # hidden channels
|
||||
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
||||
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
||||
self.cv3 = TFConv(c_, c_, 3, 1, w=w.cv3)
|
||||
self.cv4 = TFConv(c_, c_, 1, 1, w=w.cv4)
|
||||
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
|
||||
self.cv5 = TFConv(4 * c_, c_, 1, 1, w=w.cv5)
|
||||
self.cv6 = TFConv(c_, c_, 3, 1, w=w.cv6)
|
||||
self.cv7 = TFConv(2 * c_, c2, 1, 1, w=w.cv7)
|
||||
|
||||
def call(self, inputs):
|
||||
x1 = self.cv4(self.cv3(self.cv1(inputs)))
|
||||
y1 = self.cv6(self.cv5(tf.concat([x1] + [m(x1) for m in self.m], 3)))
|
||||
y2 = self.cv2(inputs)
|
||||
return self.cv7(tf.concat((y1, y2), 3))
|
||||
|
||||
class TFDetect(keras.layers.Layer):
|
||||
# TF YOLOv5 Detect layer
|
||||
|
@ -355,6 +411,7 @@ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
|||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||
m_str = m
|
||||
|
||||
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||
for j, a in enumerate(args):
|
||||
try:
|
||||
|
@ -364,8 +421,8 @@ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
|||
|
||||
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||
if m in [
|
||||
nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
|
||||
BottleneckCSP, C3, C3x]:
|
||||
nn.Conv2d, Conv, DWConv, RepConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, SPPCSPC, MixConv2d,
|
||||
Focus, CrossConv, BottleneckCSP, C3, C3x]:
|
||||
c1, c2 = ch[f], args[0]
|
||||
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
||||
|
||||
|
@ -373,7 +430,7 @@ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
|||
if m in [BottleneckCSP, C3, C3x]:
|
||||
args.insert(2, n)
|
||||
n = 1
|
||||
elif m is nn.BatchNorm2d:
|
||||
elif m in [nn.BatchNorm2d, MP]:
|
||||
args = [ch[f]]
|
||||
elif m is Concat:
|
||||
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
|
||||
|
|
Loading…
Reference in New Issue