# Official YOLOv7 Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696) Instance segmentaion code is partially based on [BlendMask](https://arxiv.org/abs/2001.00309). ## Testing [yolov7-mask.pt](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-mask.pt) [[scripts]](./tools/instance.ipynb)
## Citation ``` @article{wang2022yolov7, title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors}, author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark}, journal={arXiv preprint arXiv:2207.02696}, year={2022} } ``` ## Acknowledgements
Expand * [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet) * [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor) * [https://github.com/WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4) * [https://github.com/WongKinYiu/ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4) * [https://github.com/Megvii-BaseDetection/YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) * [https://github.com/ultralytics/yolov3](https://github.com/ultralytics/yolov3) * [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5) * [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG) * [https://github.com/JUGGHM/OREPA_CVPR2022](https://github.com/JUGGHM/OREPA_CVPR2022) * [https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose](https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose)