mirror of https://github.com/WongKinYiu/yolov7.git
fix https://github.com/WongKinYiu/yolov7/issues/855 |
||
---|---|---|
cfg | ||
data | ||
deploy/triton-inference-server | ||
figure | ||
inference/images | ||
models | ||
paper | ||
scripts | ||
tools | ||
utils | ||
.gitignore | ||
LICENSE.md | ||
README.md | ||
detect.py | ||
export.py | ||
hubconf.py | ||
requirements.txt | ||
test.py | ||
train.py | ||
train_aux.py |
README.md
Official YOLOv7
Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
Instance segmentaion code is partially based on BlendMask.
Testing
Citation
@article{wang2022yolov7,
title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
journal={arXiv preprint arXiv:2207.02696},
year={2022}
}
Acknowledgements
Expand
- https://github.com/AlexeyAB/darknet
- https://github.com/WongKinYiu/yolor
- https://github.com/WongKinYiu/PyTorch_YOLOv4
- https://github.com/WongKinYiu/ScaledYOLOv4
- https://github.com/Megvii-BaseDetection/YOLOX
- https://github.com/ultralytics/yolov3
- https://github.com/ultralytics/yolov5
- https://github.com/DingXiaoH/RepVGG
- https://github.com/JUGGHM/OREPA_CVPR2022
- https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose