yolov7/test.py

480 lines
26 KiB
Python

import argparse
import json
import os
from pathlib import Path
from threading import Thread
import numpy as np
import torch
import yaml
from tqdm import tqdm
from models.experimental import attempt_load
from utils.datasets import create_dataloader
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
from utils.metrics import ap_per_class, ConfusionMatrix
from utils.plots import plot_images, output_to_target, plot_study_txt, append_to_txt
from utils.torch_utils import select_device, time_synchronized, TracedModel
def test(data,
weights=None,
batch_size=32,
imgsz=640,
conf_thres=0.001,
iou_thres=0.6, # used for NMS
save_json=False,
single_cls=False,
augment=False,
verbose=False,
model=None,
dataloader=None,
save_dir=Path(''), # for saving images
save_txt=False, # for auto-labelling
save_hybrid=False, # for hybrid auto-labelling
save_conf=False, # save auto-label confidences
plots=True,
wandb_logger=None,
compute_loss=None,
half_precision=True,
trace=False,
is_coco=False,
v5_metric=False,
**kwargs):
# Initialize/load model and set device
hyp = kwargs['hyp']
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device
else: # called directly
set_logging()
device = select_device(opt.device, batch_size=batch_size)
# Directories
if opt.save_path == '':
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
else:
save_dir = Path(increment_path(os.path.join(opt.save_path, Path(opt.project) , opt.name), exist_ok=opt.exist_ok))
try: # no suduer can fail
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
except Exception as e:
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!",e)
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(imgsz, s=gs) # check img_size
if trace:
model = TracedModel(model, device, imgsz, opt.input_channels)
#torch.backends.cudnn.benchmark = True ##uses the inbuilt cudnn auto-tuner to find the fastest convolution algorithms. -
# Half
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA @@ HK : TODO what are the consequences add :
if half:
model.half()
# Configure
model.eval()
if isinstance(data, str):
is_coco = data.endswith('coco.yaml')
with open(data) as f:
data = yaml.load(f, Loader=yaml.SafeLoader)
check_dataset(data) # check
nc = 1 if single_cls else int(data['nc']) # number of classes
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
niou = iouv.numel()
# Logging
log_imgs = 0
if wandb_logger and wandb_logger.wandb:
log_imgs = min(wandb_logger.log_imgs, 100)
# Dataloader
if not training:
if device.type != 'cpu':
model(torch.zeros(1, opt.input_channels, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
hyp = dict()
hyp['person_size_small_medium_th'] = 32 * 32
hyp['car_size_small_medium_th'] = 44 * 44
hyp['img_percentile_removal'] = 0.3
hyp['beta'] = 0.3
hyp['gamma'] = 80 # dummy anyway augmentation is disabled
hyp['gamma_liklihood'] = 0.01
# augment=False explicit no augmentation to test
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, hyp, pad=0.5, augment=False, rect=False, #rect was True # HK@@@ TODO : why pad =0.5?? only effective in rect=True in test time ? https://github.com/ultralytics/ultralytics/issues/13271
prefix=colorstr(f'{task}: '), rel_path_images=data['path'], num_cls=data['nc'])[0]
if v5_metric:
print("Testing with YOLOv5 AP metric...")
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc, conf=conf_thres, iou_thres=iou_thres) # HK per conf per iou_thresh
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
stats_all_large, stats_person_medium = [], []
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
img = img.to(device, non_blocking=True)
img = img.half() if half else img.float()
# uint8 to fp16/32
# img /= 255.0 # 0 - 255 to 0.0 - 1.0 c# already done inside dataloader
targets = targets.to(device)
nb, _, height, width = img.shape # batch size, channels, height, width
with torch.no_grad():
# Run model
t = time_synchronized()
out, train_out = model(img, augment=augment) # inference(4 coordination, obj conf, cls conf ) and training outputs(batch_size, anchor per scale, x,y dim of scale out 40x40 ,n_classes-conf+1-objectness+4-bbox ) over 3 scales diferent outputs (2,2,80,80,7), (2,2,40,40,7) : 640/8=40
t0 += time_synchronized() - t
# out coco 80 classes : [1, 25200, 85] [batch, proposals_3_scales,4_box__coord+1_obj_score + n x classes]
# Compute loss
if compute_loss:
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
# Run NMS
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
t = time_synchronized()
out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True) # Does thresholding for class : list of detections, on (n,6) tensor per image [xyxy, conf, cls]
# out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=False) # Does thresholding for class : list of detections, on (n,6) tensor per image [xyxy, conf, cls]
t1 += time_synchronized() - t
# Statistics per image
for si, pred in enumerate(out): # [bbox_coors, objectness_logit, class]
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
path = Path(paths[si])
seen += 1
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) #niou for COCO 0.5:0.05:1
stats_all_large.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
stats_person_medium.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
continue
# Predictions
predn = pred.clone() # *xyxy, conf, cls in predn [x y ,w ,h, conf, cls] taking top 300 after NMS
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
# Append to text file
if save_txt:
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# W&B logging - Media Panel Plots
if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": "%s %.3f" % (names[cls], conf),
"scores": {"class_score": conf},
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
# Assign all predictions as incorrect ; pred takes top 300 predictions conf over 10 ious [0.5:0.95:0.05]
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
if nl:
detected = [] # target indices
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5])
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
if plots:
confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
# Per target class
for cls in torch.unique(tcls_tensor):
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
# Search for detections
if pi.shape[0]:
# Prediction to target ious
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
# Append detections
detected_set = set()
for j in (ious > iouv[0]).nonzero(as_tuple=False): # iouv[0]=0.5 IOU for dectetions iouv in general are all 0.5:0.05:.. for COCO
d = ti[i[j]] # detected target
if d.item() not in detected_set:
detected_set.add(d.item())
detected.append(d)
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
if len(detected) == nl: # all targets already located in image
break
# Append statistics (correct, conf_objectness, pcls, tcls) Predicted class is Max-Likelihood among all classes logit and threshol goes over the objectness only
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # correct @ IOU=0.5 of pred box with target
if not training or 1:
# assert len(pred[:, :4]) == 1
x, y, w, h = xyxy2xywh(pred[:, :4])[0]
if w * h > hyp['person_size_small_medium_th'] and w * h <= hyp['car_size_small_medium_th']:
stats_person_medium.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
if w * h > hyp['car_size_small_medium_th']:
stats_all_large.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# Plot images aa = np.repeat(img[0,:,:,:].cpu().permute(1,2,0).numpy(), 3, axis=2).astype('float32') cv2.imwrite('test/exp40/test_batch88_labels__.jpg', aa*255)
if plots and batch_i > 10 or 1:
# conf_thresh_plot = 0.1 # the plot threshold the connfidence
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if not training or 1:
stats_person_medium = [np.concatenate(x, 0) for x in zip(*stats_person_medium)] # to numpy
stats_all_large = [np.concatenate(x, 0) for x in zip(*stats_all_large)] # to numpy
if len(stats) and stats[0].any(): # P, R @ # max F1 index
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, v5_metric=v5_metric, save_dir=save_dir, names=names) #based on correct @ IOU=0.5 of pred box with target
if not training or 1:
if bool(stats_person_medium):
p_med, r_med, ap_med, f1_med, ap_class_med = ap_per_class(*stats_person_medium, plot=plots, v5_metric=v5_metric, save_dir=save_dir, names=names, tag='small_objects')
ap50_med, ap_med = ap_med[:, 0], ap_med.mean(1) # AP@0.5, AP@0.5:0.95
mp_med, mr_med, map50_med, map_med = p_med.mean(), r_med.mean(), ap50_med.mean(), ap_med.mean()
nt_med = np.bincount(stats_person_medium[3].astype(np.int64), minlength=nc) # number of targets per class
if bool(stats_all_large):
p_large, r_large, ap_large, f1_large, ap_class_large = ap_per_class(*stats_all_large, plot=plots, v5_metric=v5_metric, save_dir=save_dir, names=names, tag='large_objects')
ap50_large, ap_large = ap_large[:, 0], ap_large.mean(1) # AP@0.5, AP@0.5:0.95
mp_large, mr_large, map50_large, map_large = p_large.mean(), r_large.mean(), ap50_large.mean(), ap_large.mean()
nt_large = np.bincount(stats_all_large[3].astype(np.int64), minlength=nc) # number of targets per class
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
nt_med = torch.zeros(1)
nt_large = torch.zeros(1)
# Print results
pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
if not training or 1:
if bool(stats_person_medium):
try:
print(pf % ('all_medium', seen, nt_med.sum(), mp_med, mr_med, map50_med, map_med))
except Exception as e:
print(e)
if bool(stats_all_large):
try:
print(pf % ('all_large', seen, nt_large.sum(), mp_large, mr_large, map50_large, map_large))
except Exception as e:
print(e)
file_path = os.path.join(save_dir, 'class_stats.txt') #'Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95'
append_to_txt(file_path, 'all', seen, nt.sum(), mp, mr, map50, map)
# Print results per class
if 1 or (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
append_to_txt(file_path, names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])
try:
if bool(stats_person_medium):
for i, c in enumerate(ap_class_med):
print(pf % (names[c]+ '_med', seen, nt_med[c], p_med[i], r_med[i], ap50_med[i], ap_med[i]))
append_to_txt(file_path, names[c] + '_med', seen, nt_med[c], p_med[i], r_med[i], ap50_med[i], ap_med[i])
except Exception as e:
print(e)
try:
if bool(stats_all_large):
for i, c in enumerate(ap_class_large):
print(pf % (names[c]+ '_large', seen, nt_large[c], p_large[i], r_large[i], ap50_large[i], ap_large[i]))
append_to_txt(file_path, names[c] + '_large', seen, nt_large[c], p_large[i], r_large[i], ap50_large[i], ap_large[i])
except Exception as e:
print(e)
# Print speeds
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
if not training:
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
if wandb_logger and wandb_logger.wandb:
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
wandb_logger.log({"Validation": val_batches})
if wandb_images:
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
# Save JSON
if save_json and len(jdict): # @@ HK TODO:
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
anno_json = './coco/annotations/instances_val2017.json' # annotations json
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
with open(pred_json, 'w') as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
print(f'pycocotools unable to run: {e}')
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--project', default='runs/test', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
parser.add_argument('--v5-metric', action='store_true', help='assume maximum recall as 1.0 in AP calculation')
parser.add_argument('--norm-type', type=str, default='standardization',
choices=['standardization', 'single_image_0_to_1', 'single_image_mean_std','single_image_percentile_0_255',
'single_image_percentile_0_1', 'remove+global_outlier_0_1'],
help='Normalization approach')
parser.add_argument('--no-tir-signal', action='store_true', help='')
parser.add_argument('--tir-channel-expansion', action='store_true', help='drc_per_ch_percentile')
parser.add_argument('--input-channels', type=int, default=3, help='')
parser.add_argument('--save-path', default='', help='save to project/name')
opt = parser.parse_args()
if opt.tir_channel_expansion: # operates over 3 channels
opt.input_channels = 3
if opt.tir_channel_expansion and opt.norm_type != 'single_image_percentile_0_1': # operates over 3 channels
print('Not a good combination')
opt.save_json |= opt.data.endswith('coco.yaml')
opt.data = check_file(opt.data) # check file
print(opt)
#check_requirements()
hyp = dict()
if opt.task in ('train', 'val', 'test'): # run normally
test(opt.data,
opt.weights,
opt.batch_size,
opt.img_size,
opt.conf_thres,
opt.iou_thres,
opt.save_json,
opt.single_cls,
opt.augment,
opt.verbose,
save_txt=opt.save_txt | opt.save_hybrid,
save_hybrid=opt.save_hybrid,
save_conf=opt.save_conf,
trace=not opt.no_trace,
v5_metric=opt.v5_metric,
hyp=hyp)
elif opt.task == 'speed': # speed benchmarks
for w in opt.weights:
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, v5_metric=opt.v5_metric)
elif opt.task == 'study': # run over a range of settings and save/plot
# python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
for w in opt.weights:
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
y = [] # y axis
for i in x: # img-size
print(f'\nRunning {f} point {i}...')
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
plots=False, v5_metric=opt.v5_metric)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
plot_study_txt(x=x) # plot
"""
--weights ./yolov7/yolov7.pt --device 0 --batch-size 16 --data data/coco_2_tir.yaml --img-size 640 --conf 0.6 --verbose --save-txt --save-hybrid --norm-type single_image_percentile_0_1
test based on RGB coco model
--weights ./yolov7/yolov7.pt --device 0 --batch-size 64 --data data/coco_2_tir.yaml --img-size 640 --conf 0.25 --verbose --save-txt --norm-type single_image_percentile_0_1 --project test --task train
--weights ./yolov7/yolov7.pt --device 0 --batch-size 64 --data data/tir_od.yaml --img-size 640 --conf 0.25 --verbose --save-txt --norm-type single_image_percentile_0_1 --project test --task val
# Using pretrained model
--weights /mnt/Data/hanoch/runs/train/yolov7434/weights/epoch_099.pt --device 0 --batch-size 4 --data data/tir_od_test_set.yaml --img-size 640 --conf 0.25 --verbose --norm-type single_image_percentile_0_1 --project test --task test
#vbased on 7555 mAP=82.3
--weights /mnt/Data/hanoch/runs/train/yolov7563/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_test_set.yaml --img-size 640 --conf 0.02 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.4
/home/hanoch/projects/tir_od/runs/train/yolov7563/weights
--weights /mnt/Data/hanoch/runs/train/yolov7575/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_test_set.yaml --img-size 640 --conf 0.001 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.6
--weights /home/hanoch/projects/tir_od/runs/gpu02/yolov74/weights --device 0 --batch-size 16 --data data/tir_od_test_set.yaml --img-size 640 --conf 0.001 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.6
"""