yolov7/test.py

921 lines
56 KiB
Python

import argparse
import json
import os
from pathlib import Path
from threading import Thread
import numpy as np
import torch
import yaml
from tqdm import tqdm
from models.experimental import attempt_load
from utils.datasets import create_dataloader
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
from utils.metrics import ap_per_class, ConfusionMatrix, range_bar_plot, range_p_r_bar_plot
from utils.plots import plot_images, output_to_target, plot_study_txt, append_to_txt
from utils.torch_utils import select_device, time_synchronized, TracedModel
import pandas as pd
from yolo_object_embeddings import ObjectEmbeddingVisualizer
def object_size_to_range(obj_height_pixels: float, focal:int, class_id:int=1):
class_height = {0:1.5, 1:1.8} # car Sedan height = 1.5 m , person height is 1.8m
pixel_size = 17e-6
obj_height_m = class_height[class_id]
return obj_height_m * focal * 1e-3 / (obj_height_pixels * pixel_size)
def test(data,
weights=None,
batch_size=32,
imgsz=640,
conf_thres=0.001,
iou_thres=0.6, # used for NMS
save_json=False,
single_cls=False,
augment=False,
verbose=False,
model=None,
dataloader=None,
save_dir=Path(''), # for saving images
save_txt=False, # for auto-labelling
save_hybrid=False, # for hybrid auto-labelling
save_conf=False, # save auto-label confidences
plots=True,
wandb_logger=None,
compute_loss=None,
half_precision=True,
trace=False,
is_coco=False,
v5_metric=False,
**kwargs):
# Initialize/load model and set device
hyp = kwargs['hyp']
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device
else: # called directly
set_logging()
device = select_device(opt.device, batch_size=batch_size)
# Directories
if opt.save_path == '':
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
else:
save_dir = Path(increment_path(os.path.join(opt.save_path, Path(opt.project) , opt.name), exist_ok=opt.exist_ok))
try: # no suduer can fail
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
except Exception as e:
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!",e)
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(imgsz, s=gs) # check img_size
if trace:
model = TracedModel(model, device, imgsz, opt.input_channels)
#torch.backends.cudnn.benchmark = True ##uses the inbuilt cudnn auto-tuner to find the fastest convolution algorithms. -
# Half
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA @@ HK : TODO what are the consequences add :
if half:
model.half()
# Configure
model.eval()
if isinstance(data, str):
is_coco = data.endswith('coco.yaml')
with open(data) as f:
data = yaml.load(f, Loader=yaml.SafeLoader)
check_dataset(data) # check
nc = 1 if single_cls else int(data['nc']) # number of classes
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
niou = iouv.numel()
# Logging
log_imgs = 0
if wandb_logger and wandb_logger.wandb:
log_imgs = min(wandb_logger.log_imgs, 100)
# Dataloader
embed_analyse = kwargs.get('embed_analyse', False)
model_name = kwargs.get('model_name', '')
if not training:
if device.type != 'cpu':
model(torch.zeros(1, opt.input_channels, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
hyp = dict()
hyp['person_size_small_medium_th'] = 32 * 32
hyp['car_size_small_medium_th'] = 44 * 44
hyp['img_percentile_removal'] = 0.3
hyp['beta'] = 0.3
hyp['gamma'] = 80 # dummy anyway augmentation is disabled
hyp['gamma_liklihood'] = 0.01
hyp['random_pad'] = True
hyp['copy_paste'] = False
# augment=False explicit no augmentation to test
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, hyp, pad=0.5, augment=False, rect=False, #rect was True # HK@@@ TODO : why pad =0.5?? only effective in rect=True in test time ? https://github.com/ultralytics/ultralytics/issues/13271
prefix=colorstr(f'{task}: '), rel_path_images=data['path'], num_cls=data['nc'])[0]
labels = np.concatenate(dataloader.dataset.labels, 0)
class_labels = torch.tensor(labels[:, 0]) # classes
with open(save_dir / 'opt.yaml', 'w') as f:
yaml.dump(vars(opt), f, sort_keys=False)
with open(save_dir / 'hyp.yaml', 'w') as f:
yaml.dump(hyp, f, sort_keys=False)
if v5_metric:
print("Testing with YOLOv5 AP metric...")
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc, conf=conf_thres, iou_thres=iou_thres) # HK per conf per iou_thresh
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
if not training:
print(100 * '==')
print('Test set labels {} count : {}'.format(names, torch.bincount(class_labels.long(), minlength=nc) + 1))
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
# res_all = list()
predictions_df = pd.DataFrame(columns=[
'image_id',
'pred_cls',
'bbox_x',
'bbox_y',
'bbox_w',
'bbox_h',
'score'
])
if embed_analyse:
obj_embed_viz = ObjectEmbeddingVisualizer(model=model, device=device)
features_acm = torch.empty((0, 1024)) # embedding dim of last scale 1024x20x20
labels_acm = np.array([])
stats_all_large, stats_person_medium = [], []
if dataloader.dataset.use_csv_meta_data_file:
n_bins_of100m = 20
bin_size_100 = 100
bin_size_25 = 50
range_bins_map = {x.item():[0]*n_bins_of100m for x in pd.unique(dataloader.dataset.df_metadata['sensor_type'])}
range_bins_precision_all_classes = {x.item():[np.array([0, 0])] *n_bins_of100m for x in pd.unique(dataloader.dataset.df_metadata['sensor_type'])}
range_bins_recall_all_classes = {x.item():[np.array([0, 0])] *n_bins_of100m for x in pd.unique(dataloader.dataset.df_metadata['sensor_type'])}
range_bins_support_gt = {x.item():[0]*n_bins_of100m for x in pd.unique(dataloader.dataset.df_metadata['sensor_type'])}
gt_per_range_bins = {x.item(): [[] for _ in range(n_bins_of100m)] for x in pd.unique(dataloader.dataset.df_metadata['sensor_type'])}# collecting GT labels
gt_path_per_range_bins = {x.item(): [[] for _ in range(n_bins_of100m)] for x in pd.unique(dataloader.dataset.df_metadata['sensor_type'])}# collecting GT labels
bin_size_per_sensor = {}
for sensor_type in pd.unique(dataloader.dataset.df_metadata['sensor_type']):
exec('stats_all_sensor_type_{}'.format(sensor_type.item()) + '=[]') # 'stats_all_50'
exec('stats_all_sensor_type_{}_with_range'.format(sensor_type.item()) + '=[]') # 'stats_all_50'
sensor_focal = int(sensor_type.astype('str').split('_')[-1])
if sensor_focal > bin_size_100:
bin_size_per_sensor.update({sensor_focal: bin_size_100})
else:
bin_size_per_sensor.update({sensor_focal: bin_size_25})
for daytime in pd.unique(dataloader.dataset.df_metadata['part_in_day']):
exec('stats_all_time_{}'.format(daytime.lower()) + '=[]') # 'stats_all_day'
for weather_condition in pd.unique(dataloader.dataset.df_metadata['weather_condition']):
if isinstance(weather_condition, str):
exec('stats_all_weather_condition_{}'.format(weather_condition.lower()) + '=[]') # 'stats_all_day'
sensor_type_vars = [key for key in vars().keys() if 'stats_all_sensor_type' in key and not '_with_range' in key]
time_vars = [key for key in vars().keys() if 'stats_all_time' in key and not '_with_range' in key]
weather_condition_vars = [key for key in vars().keys() if 'stats_all_weather_condition' in key and not '_with_range' in key]
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
img = img.to(device, non_blocking=True)
img = img.half() if half else img.float()
# uint8 to fp16/32
# img /= 255.0 # 0 - 255 to 0.0 - 1.0 c# already done inside dataloader
targets = targets.to(device)
nb, _, height, width = img.shape # batch size, channels, height, width
with torch.no_grad():
# Run model
t = time_synchronized()
out, train_out = model(img, augment=augment) # inference out [batch, proposals, figures_of] figures_of :(4 coordination, obj conf, cls conf ) and training outputs(batch_size, anchor per scale, x,y dim of scale out 40x40 ,n_classes-conf+1-objectness+4-bbox ) over 3 scales diferent outputs (2,2,80,80,7), (2,2,40,40,7) : 640/8=40
t0 += time_synchronized() - t
# out coco 80 classes : [1, 25200, 85] [batch, proposals_3_scales,4_box__coord+1_obj_score + n x classes]
# Compute loss
if compute_loss:
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
# Run NMS
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
t = time_synchronized() #NMS
out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True) # Does thresholding for class : list of detections, on (n,6) tensor per image [xyxy, conf, cls]
# out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=False) # Does thresholding for class : list of detections, on (n,6) tensor per image [xyxy, conf, cls]
t1 += time_synchronized() - t
if trace and embed_analyse and np.sum([x.numel() for x in out])>0: # features are being saved/clone in the trace model version only TODO for others
features, labels = obj_embed_viz.extract_object_grounded_features(feature_maps=model.features,
predictions=out,
image_shape=img.shape)
features_acm = torch.cat((features_acm, features.detach().cpu()), dim=0)
labels_acm = np.concatenate((labels_acm, labels), axis=0)
# Statistics per image
for si, pred in enumerate(out): # [bbox_coors, objectness_logit, class]
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
path = Path(paths[si])
seen += 1
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) #niou for COCO 0.5:0.05:1
continue
# Predictions
predn = pred.clone() # *xyxy, conf, cls in predn [x y ,w ,h, conf, cls] taking top 300 after NMS
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
# Append to text file
if save_txt:
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# W&B logging - Media Panel Plots
if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": "%s %.3f" % (names[cls], conf),
"scores": {"class_score": conf},
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
collect_info = list()
for p, b in zip(pred.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
collect_info.append({'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
predictions_df = pd.concat([
predictions_df,
pd.DataFrame({
'image_id': [image_id],
'pred_cls': [coco91class[int(p[5])] if is_coco else int(p[5])],
'bbox_x': [[round(x, 3) for x in b][0]],
'bbox_y': [[round(x, 3) for x in b][1]],
'bbox_w': [[round(x, 3) for x in b][2]],
'bbox_h': [[round(x, 3) for x in b][3]],
'score': [round(p[4], 5)]
})
], ignore_index=True)
for it in labels.cpu().numpy():
# jdict.append({'image_id': image_id,
# 'gt_cls': it[0],
# 'bbox': [round(x, 3) for x in it[1:]]})
predictions_df = pd.concat([
predictions_df,
pd.DataFrame({
'image_id': [image_id],
'gt_cls': [it[0]],
'bbox': [[round(x, 3) for x in it[1:]]]})
], ignore_index=True)
# Assign all predictions as incorrect ; pred takes top 300 predictions conf over 10 ious [0.5:0.95:0.05]
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
if nl:
detected = [] # target indices
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5])
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
if plots:
confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
# Per target class
for cls in torch.unique(tcls_tensor):
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # target indices
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # prediction indices
# Search for detections
if pi.shape[0]:
# Prediction to target ious
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
# Append detections
detected_set = set()
for j in (ious > iouv[0]).nonzero(as_tuple=False): # iouv[0]=0.5 IOU for dectetions iouv in general are all 0.5:0.05:.. for COCO
d = ti[i[j]] # detected target
if d.item() not in detected_set:
detected_set.add(d.item())
detected.append(d)
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
if len(detected) == nl: # all targets already located in image
break
# Append statistics (correct, conf_objectness, pcls, tcls) Predicted class is Max-Likelihood among all classes logit and threshol goes over the objectness only
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # correct @ IOU=0.5 of pred box with target
if save_json:
predictions_df = pd.concat([
predictions_df,
pd.DataFrame({
'image_id': [image_id],
'correct': [correct[:, 0].cpu()]
})
], ignore_index=True)
if 1: #not training or 1:
# assert len(pred[:, :4]) == 1
x, y, w, h = xyxy2xywh(pred[:, :4])[0]##HK BUG !! need to go over all preds see which indexes aligned to which value
if w * h > hyp['person_size_small_medium_th'] and w * h <= hyp['car_size_small_medium_th']:
stats_person_medium.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# [(ix, w.cpu() * h.cpu()) for ix, (x, y, w, h) in enumerate(xyxy2xywh(pred[:, :4])) if w * h > hyp['person_size_small_medium_th'] and w * h <= hyp['car_size_small_medium_th']]
if w * h > hyp['car_size_small_medium_th']:
stats_all_large.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# sensor type
if dataloader.dataset.use_csv_meta_data_file:
try:
weather_condition = (dataloader.dataset.df_metadata[dataloader.dataset.df_metadata['tir_frame_image_file_name'] == str(path).split('/')[-1]]['weather_condition'].item())
if isinstance(weather_condition, str):
weather_condition = weather_condition.lower()
exec([x for x in weather_condition_vars if str(weather_condition) in x][0] + '.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))')
except Exception as e:
print(f'{weather_condition} fname WARNING: Ignoring corrupted image and/or label {weather_condition}: {e}')
time_in_day = dataloader.dataset.df_metadata[dataloader.dataset.df_metadata['tir_frame_image_file_name'] == str(path).split('/')[-1]]['part_in_day'].item().lower()
# eval([x for x in time_vars if str(time_in_day) in x][0]).append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
exec([x for x in time_vars if str(time_in_day) in x][0] + '.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))')
sensor_type = dataloader.dataset.df_metadata[dataloader.dataset.df_metadata['tir_frame_image_file_name'] == str(path).split('/')[-1]]['sensor_type'].item()
# obj_range_m = torch.tensor(
# [(object_size_to_range(obj_height_pixels=h.cpu(), focal=sensor_type, class_id=class_id.cpu().numpy().item()))
# for class_id, (x, y, w, h) in zip(pred[:, 5], xyxy2xywh(pred[:, :4]))])
gt_range = [(object_size_to_range(obj_height_pixels=h, focal=sensor_type, class_id=class_id.numpy().item())) for
class_id, (x, y, w, h) in zip(labels[:, 0].cpu(), labels[:, 1:5].cpu())]
# coupling the range cell between any overlapped IOU >TH between pred bbox and GT bbox
obj_range_m = list()
i = 0
for class_id_pred, (x1_p, y1_p, x2_p, y2_p) in zip(pred[:, 5].cpu(), pred[:, :4].cpu()):
range_candidate = torch.tensor(
object_size_to_range(obj_height_pixels=xyxy2xywh(pred[:, :4])[0][-1].cpu(),
focal=sensor_type,
class_id=class_id_pred.cpu().numpy().item()))
# Find any IOU overlapped between GT and prediction
for class_id_gt, (x1_gt, y1_gt, x2_gt, y2_gt), (xc,yc,w,h) in zip(labels[:, 0].cpu(),
xywh2xyxy(labels[:, 1:5].cpu()), labels[:, 1:5].cpu()):
ious = box_iou(torch.tensor((x1_gt, y1_gt, x2_gt, y2_gt)).unsqueeze(axis=0), torch.tensor((x1_p, y1_p, x2_p, y2_p)).unsqueeze(axis=0))
i += 1
if ious > iouv.cpu()[0]: #
range_candidate = torch.tensor(
object_size_to_range(obj_height_pixels=h.cpu(),
focal=sensor_type,
class_id=class_id_pred.cpu().numpy().item()))
break # the aligned GT/Pred was found no need to iterate more, this is the atmost candidate
obj_range_m.append(range_candidate)
# else: #ranges = func(sqrt(height*width))
# obj_range_m = torch.tensor([(object_size_to_range(obj_height_pixels=(np.sqrt(h.cpu()*w.cpu())), focal=sensor_type)) for ix, (x, y, w, h) in enumerate(xyxy2xywh(pred[:, :4]))])
# gt_range = [(object_size_to_range(obj_height_pixels=(np.sqrt(h*w)), focal=sensor_type)) for ix, (x, y, w, h) in enumerate(labels[:,1:5].cpu())]
#
if 1:
gt_range = [_range // 100 for _range in gt_range] #gt_range = [_range // 100 for _range in gt_range]
else:
gt_range = [_range//bin_size_per_sensor[sensor_type] for _range in gt_range]
for gt_lbl, rng_ in zip(labels[:,0], gt_range):
if rng_ < n_bins_of100m :
gt_per_range_bins[sensor_type][int(rng_.item())].append(int(gt_lbl.item())) # add to each range bin GT the GT counts
gt_path_per_range_bins[sensor_type][int(rng_.item())].append(str(path))
# (obj_range_m.cpu().reshape(-1))
exec([x for x in sensor_type_vars if str(sensor_type) in x][0] + '.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))')
exec([x+'_with_range' for x in sensor_type_vars if str(sensor_type) in x][0] + '.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls, obj_range_m, pred[:, 5].shape[0]*[str(path)]))') # path is replicated to match each prediction TP/FP in the image
# for daytime in pd.unique(dataloader.dataset.df_metadata['part_in_day']):
# exec('stats_all_part_in_day{}'.format(daytime.lower()) + '=[]') # 'stats_all_day'
# Plot images aa = np.repeat(img[0,:,:,:].cpu().permute(1,2,0).numpy(), 3, axis=2).astype('float32') cv2.imwrite('test/exp40/test_batch88_labels__.jpg', aa*255)
if (plots and batch_i > 10):
# conf_thresh_plot = 0.1 # the plot threshold the connfidence
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if trace and embed_analyse:
embeddings = obj_embed_viz.visualize_object_embeddings(features_acm,
labels_acm,
path=save_dir,
tag=opt.conf_thres)
if not training or 1:
stats_person_medium = [np.concatenate(x, 0) for x in zip(*stats_person_medium)] # to numpy
stats_all_large = [np.concatenate(x, 0) for x in zip(*stats_all_large)] # to numpy
if dataloader.dataset.use_csv_meta_data_file:
for time_var in time_vars:
exec('{}=[np.concatenate(x, 0) for x in zip(*{})]'.format(time_var, time_var)) # 'stats_all_50'
for sensor_type in sensor_type_vars:
exec('{}=[np.concatenate(x, 0) for x in zip(*{})]'.format(sensor_type, sensor_type)) # 'stats_all_50'
exec('{}_with_range=[np.concatenate(x, 0) for x in zip(*{}_with_range)]'.format(sensor_type, sensor_type)) # 'stats_all_50'
for weather_condition in weather_condition_vars:
exec('{}=[np.concatenate(x, 0) for x in zip(*{})]'.format(weather_condition, weather_condition)) # 'stats_all_50'
if len(stats) and stats[0].any():
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, v5_metric=v5_metric, save_dir=save_dir,
names=names, class_support=nt, tag=model_name) #based on correct @ IOU=0.5 of pred box with target
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
# if bool(stats_person_medium):
# p_med, r_med, ap_med, f1_med, ap_class_med = ap_per_class(*stats_person_medium, plot=plots, v5_metric=v5_metric, save_dir=save_dir, names=names, tag='small_objects')
# ap50_med, ap_med = ap_med[:, 0], ap_med.mean(1) # AP@0.5, AP@0.5:0.95
# mp_med, mr_med, map50_med, map_med = p_med.mean(), r_med.mean(), ap50_med.mean(), ap_med.mean()
# nt_med = np.bincount(stats_person_medium[3].astype(np.int64), minlength=nc) # number of targets per class
#
# if bool(stats_all_large):
# p_large, r_large, ap_large, f1_large, ap_class_large = ap_per_class(*stats_all_large, plot=plots, v5_metric=v5_metric, save_dir=save_dir, names=names, tag='large_objects')
# ap50_large, ap_large = ap_large[:, 0], ap_large.mean(1) # AP@0.5, AP@0.5:0.95
# mp_large, mr_large, map50_large, map_large = p_large.mean(), r_large.mean(), ap50_large.mean(), ap_large.mean()
# nt_large = np.bincount(stats_all_large[3].astype(np.int64), minlength=nc) # number of targets per class
if dataloader.dataset.use_csv_meta_data_file:
for time_var in time_vars:
if bool(eval(time_var)):
# TODO in the names of classes in labels add the support from nt_, also pass the support of overall and the title name like in the tag but only day /night to the title inside plot_pr_curve()
exec("nt_{} = np.bincount({}[3].astype(np.int64), minlength={})".format(time_var, time_var, nc))
exec("p_{}, r_{}, ap_{}, f1_{}, ap_class_{} = ap_per_class(*{}, plot={}, v5_metric={}, save_dir={}, names={}, tag={}, class_support=nt_{})".format(time_var,
time_var, time_var, time_var, time_var, time_var, plots, v5_metric, 'str(save_dir)', names, 'str(time_var)', time_var))
exec("ap50_{}, ap_{} = ap_{}[:, 0], ap_{}.mean(1)".format(time_var, time_var, time_var, time_var))
exec("mp_{}, mr_{}, map50_{}, map_{} = p_{}.mean(), r_{}.mean(), ap50_{}.mean(), ap_{}.mean()".format(time_var, time_var, time_var, time_var, time_var, time_var, time_var, time_var))
for weather_condition in weather_condition_vars:
exec("nt_{} = np.bincount({}[3].astype(np.int64), minlength={})".format(weather_condition, weather_condition, nc))
exec("p_{}, r_{}, ap_{}, f1_{}, ap_class_{} = ap_per_class(*{}, plot={}, v5_metric={}, save_dir={}, names={}, tag={}, class_support=nt_{})".format(weather_condition,
weather_condition, weather_condition, weather_condition, weather_condition, weather_condition, plots, v5_metric, 'str(save_dir)', names, 'str(weather_condition)', weather_condition))
exec("ap50_{}, ap_{} = ap_{}[:, 0], ap_{}.mean(1)".format(weather_condition, weather_condition, weather_condition, weather_condition))
exec("mp_{}, mr_{}, map50_{}, map_{} = p_{}.mean(), r_{}.mean(), ap50_{}.mean(), ap_{}.mean()".format(weather_condition, weather_condition,
weather_condition, weather_condition, weather_condition, weather_condition, weather_condition, weather_condition))
if 0 : #debug
ranges100_pred = np.array([])
print('gt class dist per range cell of 100s and sum of GTs ')
print([(100*(ix+1), np.unique(x, return_counts=True), np.size(x)) for ix, x in enumerate(gt_per_range_bins[210])])
exec('ranges100_pred={}_with_range[4]//100'.format('stats_all_sensor_type_210'))
exec('cls_pred={}_with_range[2]'.format('stats_all_sensor_type_210'))
exec('predicted={}_with_range[0]'.format('stats_all_sensor_type_210'))
print('True predictions on 210', eval('ranges100_pred.shape'))
np.array([np.size(x) for ix, x in enumerate(gt_per_range_bins[210])]).T # predictions may be TRue or False
print('detections preds per range cell')
np.unique(ranges100_pred, return_counts=True)[1].T
[np.bincount(x, minlength=2) for ix, x in enumerate(gt_per_range_bins[210])]
range_bin_ = 1
np.unique(cls_pred[ranges100_pred == range_bin_], return_counts=True)
# count of good bad predictions per class
stats_all_sensor_type_210_with_range[2][ranges100_pred == range_bin_]
np.unique(stats_all_sensor_type_210_with_range[0][:, 0][ranges100_pred == range_bin_],
return_counts=True)
for sensor_type in sensor_type_vars:
if bool(eval(sensor_type)):
exec("nt_{} = np.bincount({}[3].astype(np.int64), minlength={})".format(sensor_type, sensor_type, nc))
exec("p_{}, r_{}, ap_{}, f1_{}, ap_class_{} = ap_per_class(*{}, plot={}, v5_metric={}, save_dir={}, names={}, tag={}, class_support=nt_{})".format(sensor_type,
sensor_type, sensor_type, sensor_type, sensor_type, sensor_type, plots, v5_metric, 'str(save_dir)', names, 'str(sensor_type)',sensor_type))
exec("ap50_{}, ap_{} = ap_{}[:, 0], ap_{}.mean(1)".format(sensor_type, sensor_type, sensor_type, sensor_type))
exec("mp_{}, mr_{}, map50_{}, map_{} = p_{}.mean(), r_{}.mean(), ap50_{}.mean(), ap_{}.mean()".format(sensor_type, sensor_type, sensor_type, sensor_type, sensor_type, sensor_type, sensor_type, sensor_type))
sensor_focal = int(sensor_type.split('_')[-1])
if 1 :#sensor_focal > 100: # ML
exec('ranges={}_with_range[4]//100'.format(sensor_type))
for rng_100 in range(0,n_bins_of100m):
nt_stat_list_per_range = np.array([0, 0])
r_stat_list_per_range = np.array([0, 0])
p_stat_list_per_range = np.array([0, 0])
map50_per_range = np.array(0)
# ind = np.array([])
# exec('ind = np.where(ranges == rng_100)[0]')
ind = eval('np.where(ranges == rng_100)[0]')
stat_list_per_range = list()
if ind.size>0: # if there were detections at that range bin
for ele in range(3):# taking the relevant preds related to the distance bin, since P/R/AP are computed globally vs. all GT/targets then it is compared to all targets
stat_list_per_range.append(eval(sensor_type)[ele][ind])
# GT at thta bin range
if not bool(gt_per_range_bins[sensor_focal][rng_100]): # predictions but no GT => FP=>low Prcesion
map50_per_range = np.array(0)
nt_stat_list_per_range = np.array([0,0])
r_stat_list_per_range = np.array([0,0])
p_stat_list_per_range = np.array([0,0])
else:
stat_list_per_range.append(np.array([x for x in gt_per_range_bins[sensor_focal][rng_100]])) # add all targets/labels
nt_stat_list_per_range = np.bincount(stat_list_per_range[3].astype(np.int64), minlength=nc) # GT count per bin range of classes
p_stat_list_per_range, r_stat_list_per_range, ap_stat_list_per_range, f1_stat_list_per_range, \
ap_class_stat_list_per_range = ap_per_class(*stat_list_per_range, plot=plots, v5_metric=v5_metric,
save_dir='', names=names, tag='',
class_support=nt_stat_list_per_range)
ap50_per_range, ap_per_range = ap_stat_list_per_range[:, 0], ap_stat_list_per_range.mean(1) # AP@0.5, AP@0.5:0.95
mp_per_range, mr_per_range, map50_per_range, map_per_range = p_stat_list_per_range.mean(), r_stat_list_per_range.mean(), ap50_per_range.mean(), ap_per_range.mean()
else:# no prediction at this range
r_stat_list_per_range = np.array([0, 0])
p_stat_list_per_range = np.array([0, 0])
fn = len(gt_per_range_bins[sensor_focal][rng_100])
recall = 0 # no TP 0/TP+FN
precision = 0
map50_per_range = np.array(0)
if not bool(gt_per_range_bins[sensor_focal][rng_100]):# there are no GT no pred
nt_stat_list_per_range = np.array([0,0]) # actual GT
else:
nt_stat_list_per_range = np.array(gt_per_range_bins[sensor_focal][rng_100]).sum()
# there are GT but no pred
# print(map50_per_range)
range_bins_map[sensor_focal][rng_100] = map50_per_range.item()
range_bins_precision_all_classes[sensor_focal][rng_100] = nt_stat_list_per_range.astype('bool').astype('int')*p_stat_list_per_range # broadcast the count of each calss in case one of the classes are missing
range_bins_recall_all_classes[sensor_focal][rng_100] = nt_stat_list_per_range.astype('bool').astype('int')*r_stat_list_per_range
range_bins_support_gt[sensor_focal][rng_100] = nt_stat_list_per_range.sum().item()
# bug_diff = np.array(range_bins_support_gt[210]) - np.array(
# [np.size(x) for ix, x in enumerate(gt_per_range_bins[210])]).T
# In case no Preds than there is no GT count in the if condition anyway if pred=0=>TP=0 than P=R=0
range_bar_plot(n_bins_of100m, range_bins_map, save_dir, range_bins_support=range_bins_support_gt)
range_p_r_bar_plot(n_bins_of100m, range_bins_precision_all_classes, range_bins_recall_all_classes,
save_dir, range_bins_support=range_bins_support_gt, names=names, conf=opt.conf_thres)
# for time_var in time_vars:
# for sensor_type in sensor_type_vars:
# nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
nt_med = torch.zeros(1)
nt_large = torch.zeros(1)
# Print results
pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
# if not training or 1:
# if bool(stats_person_medium):
# try:
# print(pf % ('all_medium', seen, nt_med.sum(), mp_med, mr_med, map50_med, map_med))
# except Exception as e:
# print(e)
#
# if bool(stats_all_large):
# try:
# print(pf % ('all_large', seen, nt_large.sum(), mp_large, mr_large, map50_large, map_large))
# except Exception as e:
# print(e)
file_path = os.path.join(save_dir, 'class_stats.txt') #'Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95'
append_to_txt(file_path, 'all', seen, nt.sum(), mp, mr, map50, map)
# Print results per class
if 1 or (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
append_to_txt(file_path, names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])
# try:
# if bool(stats_person_medium):
# for i, c in enumerate(ap_class_med):
# print(pf % (names[c]+ '_med', seen, nt_med[c], p_med[i], r_med[i], ap50_med[i], ap_med[i]))
# append_to_txt(file_path, names[c] + '_med', seen, nt_med[c], p_med[i], r_med[i], ap50_med[i], ap_med[i])
# except Exception as e:
# print(e)
#
# try:
# if bool(stats_all_large):
# for i, c in enumerate(ap_class_large):
# print(pf % (names[c]+ '_large', seen, nt_large[c], p_large[i], r_large[i], ap50_large[i], ap_large[i]))
# append_to_txt(file_path, names[c] + '_large', seen, nt_large[c], p_large[i], r_large[i], ap50_large[i], ap_large[i])
# except Exception as e:
# print(e)
# Print speeds
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
if not training:
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
if wandb_logger and wandb_logger.wandb:
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
wandb_logger.log({"Validation": val_batches})
if wandb_images:
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
# Save JSON
if save_json and len(jdict): # @@ HK TODO:
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
anno_json = './coco/annotations/instances_val2017.json' # annotations json
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
pred_df_file = str(save_dir / f"{w}_predictions.csv") # predictions json
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
with open(pred_json, 'w') as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval1 = COCOeval(anno, pred, 'bbox')
if is_coco:
eval1.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
eval1.evaluate()
eval1.accumulate()
eval1.summarize()
map, map50 = eval1.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
print(f'pycocotools unable to run: {e}')
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
if save_json:
predictions_df.to_csv(pred_df_file, index=False)
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def sensor_type_breakdown_kpi(gt_per_range_bins, n_bins_of100m, names, nc, plots, range_bins_map, range_bins_support,
save_dir, bin_size_per_sensor, v5_metric, **kwargs):
# print(sensor_type_50)
# print(sensor_type_210)
# print(f_sensor_type_50)
# print(f_sensor_type_210)
# exec('{}=sensor_type_50'.format(f_sensor_type_50))
# exec('{}=sensor_type_210'.format(f_sensor_type_210))
# print([key for key in vars().keys() if 'stats_all_sensor_type' in key and not '_with_range' in key])
sensor_type_vars = [key for key in vars().keys() if 'stats_all_sensor_type' in key and not '_with_range' in key]
# exec('{}=sensor_type_50'.format(f_sensor_type_50))
for sensor_type in sensor_type_vars: #sensor_type_vars:
if bool(sensor_type):
exec("nt_{} = np.bincount({}[3].astype(np.int64), minlength={})".format(sensor_type, sensor_type, nc))
exec(
"p_{}, r_{}, ap_{}, f1_{}, ap_class_{} = ap_per_class(*{}, plot={}, v5_metric={}, save_dir={}, names={}, tag={}, class_support=nt_{})".format(
sensor_type,
sensor_type, sensor_type, sensor_type, sensor_type, sensor_type, plots, v5_metric, 'str(save_dir)',
names, 'str(sensor_type)', sensor_type))
exec("ap50_{}, ap_{} = ap_{}[:, 0], ap_{}.mean(1)".format(sensor_type, sensor_type, sensor_type,
sensor_type))
exec("mp_{}, mr_{}, map50_{}, map_{} = p_{}.mean(), r_{}.mean(), ap50_{}.mean(), ap_{}.mean()".format(
sensor_type, sensor_type, sensor_type, sensor_type, sensor_type, sensor_type, sensor_type, sensor_type))
sensor_focal = int(sensor_type.split('_')[-1])
if 1: # sensor_focal > 100: # ML
exec('ranges={}_with_range[3]//{}'.format(sensor_type, bin_size_per_sensor[sensor_focal]))
for rng_100 in range(0, n_bins_of100m):
# ind = np.array([])
# exec('ind = np.where(ranges == rng_100)[0]')
ind = eval('np.where(ranges == rng_100)[0]')
stat_list_per_range = list()
if ind.any(): # if there were detections at that range bin
for ele in range(
3): # taking the relevant preds related to the distance bin, since P/R/AP are computed globally vs. all GT/targets then it is compared to all targets
stat_list_per_range.append(eval(sensor_type)[ele][ind])
# GT at thta bin range
if not bool(
gt_per_range_bins[sensor_focal][rng_100]): # predictions but no GT => FP=>low Prcesion
map50_per_range = np.array(0)
nt_stat_list_per_range = np.array(0)
else:
stat_list_per_range.append(np.array(
[x for x in gt_per_range_bins[sensor_focal][rng_100]])) # add all targets/labels
nt_stat_list_per_range = np.bincount(stat_list_per_range[3].astype(np.int64), minlength=nc)
p_stat_list_per_range, r_stat_list_per_range, ap_stat_list_per_range, f1_stat_list_per_range, \
ap_class_stat_list_per_range = ap_per_class(*stat_list_per_range, plot=plots,
v5_metric=v5_metric,
save_dir='', names=names, tag='',
class_support=nt_stat_list_per_range)
ap50_per_range, ap_per_range = ap_stat_list_per_range[:, 0], ap_stat_list_per_range.mean(
1) # AP@0.5, AP@0.5:0.95
mp_per_range, mr_per_range, map50_per_range, map_per_range = p_stat_list_per_range.mean(), r_stat_list_per_range.mean(), ap50_per_range.mean(), ap_per_range.mean()
else: # no prediction at this range
if not bool(gt_per_range_bins[sensor_focal][rng_100]): # there are GT but no pred
nt_stat_list_per_range = np.array(0)
fn = len(gt_per_range_bins[sensor_focal][rng_100])
recall = 0 # no TP 0/TP+FN
precision = 0
map50_per_range = np.array(0)
print(map50_per_range)
range_bins_map[sensor_focal][rng_100] = map50_per_range.item()
range_bins_support[sensor_focal][rng_100] = nt_stat_list_per_range.sum().item()
range_bar_plot(n_bins=17, range_bins=range_bins_map, save_dir=save_dir, range_bins_support=range_bins_support)
# for time_var in time_vars:
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--project', default='runs/test', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
parser.add_argument('--v5-metric', action='store_true', help='assume maximum recall as 1.0 in AP calculation')
parser.add_argument('--norm-type', type=str, default='standardization',
choices=['standardization', 'single_image_0_to_1', 'single_image_mean_std','single_image_percentile_0_255',
'single_image_percentile_0_1', 'remove+global_outlier_0_1'],
help='Normalization approach')
parser.add_argument('--no-tir-signal', action='store_true', help='')
parser.add_argument('--tir-channel-expansion', action='store_true', help='drc_per_ch_percentile')
parser.add_argument('--input-channels', type=int, default=3, help='')
parser.add_argument('--save-path', default='', help='save to project/name')
parser.add_argument('--csv-metadata-path', default='', help='save to project/name')
parser.add_argument('--embed-analyse', action='store_true', help='')
opt = parser.parse_args()
if opt.tir_channel_expansion: # operates over 3 channels
opt.input_channels = 3
if opt.tir_channel_expansion and opt.norm_type != 'single_image_percentile_0_1': # operates over 3 channels
print('Not a good combination')
opt.save_json |= opt.data.endswith('coco.yaml')
opt.data = check_file(opt.data) # check file
print(opt)
#check_requirements()
hyp = dict()
model_name = str(opt.weights)[str(opt.weights).find('yolo'):].split('/')[0]
if opt.task in ('train', 'val', 'test'): # run normally
test(opt.data,
opt.weights,
opt.batch_size,
opt.img_size,
opt.conf_thres,
opt.iou_thres,
opt.save_json,
opt.single_cls,
opt.augment,
opt.verbose,
save_txt=opt.save_txt | opt.save_hybrid,
save_hybrid=opt.save_hybrid,
save_conf=opt.save_conf,
trace=not opt.no_trace,
v5_metric=opt.v5_metric,
hyp=hyp,
embed_analyse=opt.embed_analyse,
model_name=model_name)
elif opt.task == 'speed': # speed benchmarks
for w in opt.weights:
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, v5_metric=opt.v5_metric)
elif opt.task == 'study': # run over a range of settings and save/plot
# python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
for w in opt.weights:
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
y = [] # y axis
for i in x: # img-size
print(f'\nRunning {f} point {i}...')
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
plots=False, v5_metric=opt.v5_metric)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
plot_study_txt(x=x) # plot
"""
--weights ./yolov7/yolov7.pt --device 0 --batch-size 16 --data data/coco_2_tir.yaml --img-size 640 --conf 0.6 --verbose --save-txt --save-hybrid --norm-type single_image_percentile_0_1
test based on RGB coco model
--weights ./yolov7/yolov7.pt --device 0 --batch-size 64 --data data/coco_2_tir.yaml --img-size 640 --conf 0.25 --verbose --save-txt --norm-type single_image_percentile_0_1 --project test --task train
--weights ./yolov7/yolov7.pt --device 0 --batch-size 64 --data data/tir_od.yaml --img-size 640 --conf 0.25 --verbose --save-txt --norm-type single_image_percentile_0_1 --project test --task val
# Using pretrained model
--weights /mnt/Data/hanoch/runs/train/yolov7434/weights/epoch_099.pt --device 0 --batch-size 4 --data data/tir_od_test_set.yaml --img-size 640 --conf 0.25 --verbose --norm-type single_image_percentile_0_1 --project test --task test
#vbased on 7555 mAP=82.3
--weights /mnt/Data/hanoch/runs/train/yolov7563/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_test_set.yaml --img-size 640 --conf 0.02 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.4
/home/hanoch/projects/tir_od/runs/train/yolov7563/weights
--weights /mnt/Data/hanoch/runs/train/yolov7575/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_test_set.yaml --img-size 640 --conf 0.001 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.6
--weights /home/hanoch/projects/tir_od/runs/gpu02/yolov74/weights --device 0 --batch-size 16 --data data/tir_od_test_set.yaml --img-size 640 --conf 0.001 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.6
3class
/mnt/Data/hanoch/runs/train/yolov71058
--weights /mnt/Data/hanoch/runs/train/yolov71058/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_center_roi_aug_list_train_cls.yaml --img-size 640 --conf 0.02 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task val --iou-thres 0.6
tir_tiff_w_center_roi_validation_set_train_cls_usa.txt
# per day/nigh SY/ML
--weights /mnt/Data/hanoch/runs/train/yolov7999/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_test_set.yaml --img-size 640 --conf 0.001 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.6 --csv-metadata-path tir_od/tir_center_merged_seq_tiff_last_original_png.xlsx
P/R
--weights /mnt/Data/hanoch/runs/train/yolov7999/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_test_set.yaml --img-size 640 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.6 --csv-metadata-path tir_od/tir_center_merged_seq_tiff_last_original_png.xlsx --conf 0.65
mAP:
--weights /mnt/Data/hanoch/runs/train/yolov7999/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_test_set.yaml --img-size 640 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.6 --csv-metadata-path tir_od/tir_center_merged_seq_tiff_last_original_png.xlsx --conf 0.01
Fixed wether csv P/R
--weights /mnt/Data/hanoch/runs/train/yolov7999/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_test_set.yaml --img-size 640 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --csv-metadata-path tir_od/tir_tiff_seq_png_3_class_fixed_whether.xlsx --iou-thres 0.6 --conf 0.65
FOG
--weights /mnt/Data/hanoch/runs/train/yolov7999/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_fog_set.yaml --img-size 640 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --csv-metadata-path tir_od/tir_tiff_seq_png_3_class_fixed_whether.xlsx --conf 0.65 --iou-thres 0.6
Locomotive
--weights /mnt/Data/hanoch/runs/train/yolov71107/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_test_set_3_class_train.yaml --img-size 640 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.6 --conf 0.1 --embed-analyse
--weights /mnt/Data/hanoch/runs/train/yolov71133/weights/best.pt --device 0 --batch-size 16 --data data/tir_od_test_set_3_class_train.yaml --img-size 640 --verbose --norm-type single_image_percentile_0_1 --input-channels 1 --project test --task test --iou-thres 0.6 --conf 0.4
------- Error analysis ------------
1st run with conf_th=0.0001 then observe the desired threshold, re-run with the desired threshold abd observe images with bboxes given the deired threshold
"""