yolov7/detect.py

263 lines
14 KiB
Python

import argparse
import copy
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import os
import tifffile
import copy
import numpy as np
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages, scaling_image
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
def detect(save_img=False):
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
save_img = not opt.nosave #and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.lower().startswith( # removed HK or source.endswith('.txt')
('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = webcam and not source.endswith('.txt')
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if trace:
model = TracedModel(model, device, opt.img_size, opt.input_channels)
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride,
scaling_type=opt.norm_type, input_channels=opt.input_channels,
no_tir_signal=opt.no_tir_signal,
tir_channel_expansion=opt.tir_channel_expansion,
rel_path_for_list_files=opt.rel_path_for_list_files)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, opt.input_channels, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
old_img_w = old_img_h = imgsz
old_img_b = 1
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
if os.path.basename(path).split('.')[1] == 'tiff': # im0s only for plotting version
im0s = np.repeat(im0s[ :, :, np.newaxis], 3, axis=2) # convert GL to RGB by replication
im0s = scaling_image(im0s, scaling_type=opt.norm_type)
if im0s.max()<=1:
im0s = im0s*255
# im0s = copy.deepcopy(np.uint8(img.transpose(1,2,0) * 255.0))
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
# img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Warmup
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
old_img_b = img.shape[0]
old_img_h = img.shape[2]
old_img_w = img.shape[3]
for i in range(3):
model(img, augment=opt.augment)[0]
# Inference
t1 = time_synchronized()
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
pred = model(img, augment=opt.augment)[0]
t2 = time_synchronized()
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t3 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
# Print time (inference + NMS)
print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
# Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
print(save_path,os.path.basename(save_path).split('.'))
if os.path.basename(save_path).split('.')[1] == 'tiff':
#print('ka')
save_path = os.path.join(os.path.dirname(save_path), os.path.basename(save_path).split('.')[0] + '.png')
cv2.imwrite(save_path, im0)
else:
cv2.imwrite(save_path, im0)
print(f" The image with the result is saved in: {save_path}")
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
#print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
parser.add_argument('--norm-type', type=str, default='standardization',
choices=['standardization', 'single_image_0_to_1', 'single_image_mean_std','single_image_percentile_0_255',
'single_image_percentile_0_1', 'remove+global_outlier_0_1'],
help='Normalization approach')
parser.add_argument('--no-tir-signal', action='store_true', help='')
parser.add_argument('--tir-channel-expansion', action='store_true', help='drc_per_ch_percentile')
parser.add_argument('--input-channels', type=int, default=1, help='')
parser.add_argument('--save-path', default='', help='save to project/name')
parser.add_argument('--rel-path-for-list-files', default='/mnt/Data/hanoch/tir_frames_rois/yolo7_tir_data_all', help='')
opt = parser.parse_args()
if opt.tir_channel_expansion: # operates over 3 channels
opt.input_channels = 3
if opt.tir_channel_expansion and opt.norm_type != 'single_image_percentile_0_1': # operates over 3 channels
print('Not a good combination')
print(opt)
#check_requirements(exclude=('pycocotools', 'thop'))
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov7.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()
# --source yolov7/tir_od/fog_data_set.txt
"""
python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg
python -u ./yolov7/detect.py --weights ./yolov7/yolov7.pt --conf 0.25 --img-size 640 --device 0 --save-txt --source /home/hanoch/projects/tir_frames_rois/png/Rotem_test_22c_dec18.png
python -u ./yolov7/detect.py --weights ./yolov7/yolov7.pt --conf 0.25 --img-size 640 --device 0 --save-txt --norm-type single_image_percentile_0_1 --source /home/hanoch/projects/tir_frames_rois/yolo7_tir_data_all/TIR10_v20_Dec18_Test22C_20181127_223533_FS_210F_0001_5500_ROTEM_left_roi_220_4707.tiff
--weights ./yolov7/yolov7.pt --conf 0.25 --img-size 640 --device 0 --save-txt --norm-type single_image_percentile_0_1 --source /home/hanoch/projects/tir_frames_rois/yolo7_tir_data_all/TIR10_v20_Dec18_Test22C_20181127_223533_FS_210F_0001_5500_ROTEM_left_roi_220_4707.tiff
--weights ./yolov7/yolov7.pt --conf 0.25 --img-size 640 --device 0 --save-txt --norm-type single_image_percentile_0_1 --source /home/hanoch/projects/tir_frames_rois/yolo7_tir_data_all/TIR10_V50_OCT21_Test46A_ML_RD_IL_2021_08_05_14_48_05_FS_210_XGA_630_922_DENIS_right_roi_210_881.tiff
--weights ./yolov7/yolov7.pt --conf 0.25 --img-size 640 --device 0 --save-txt --norm-type single_image_percentile_0_1 --source /home/hanoch/projects/tir_frames_rois/yolo7_tir_data_all/TIR135_V80_JUL23_Test55A_SY_RD_US_2023_01_18_07_29_38_FS_50_XGA_0001_3562_Shahar_left_roi_50_1348.tiff
--weights /mnt/Data/hanoch/runs/train/yolov7999/weights/best.pt --conf 0.25 --img-size 640 --device 0 --save-txt --norm-type single_image_percentile_0_1 --source /home/hanoch/projects/tir_frames_rois/fog/28_02_2019_16_05_01[1]_04783.tiff
YOLO model
--weights ./yolov7/yolov7.pt --conf 0.25 --img-size 640 --device 0 --save-txt --norm-type single_image_percentile_0_1 --source /home/hanoch/projects/tir_od/Snipaste_2024-09-15_09-00-58_tir_135_TIR135_V80_JUL23_Test55A_SY_RD_US_2023_01_18_07_29_38_FS_50_XGA_0001_3562_Shahar_left_roi_50_1348.png
--weights /mnt/Data/hanoch/runs/train/yolov7575/weights/best.pt --conf 0.01 --img-size 640 --input-channels 1 --device 0 --save-txt --norm-type single_image_percentile_0_1 --source /home/hanoch/projects/tir_frames_rois/tir_tiff_tiff_files/TIR8_V50_Test19G_Jul20_2018-12-06_13-39-17_FS_50F_0114_6368_ROTEM_right_roi_50_345.tiff
"""