mirror of https://github.com/WongKinYiu/yolov7.git
235 lines
12 KiB
Markdown
235 lines
12 KiB
Markdown
# Official YOLOv7
|
|
|
|
Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
|
|
|
|
[](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=yolov7-trainable-bag-of-freebies-sets-new)
|
|
[](https://huggingface.co/spaces/akhaliq/yolov7)
|
|
<a href="https://colab.research.google.com/gist/AlexeyAB/b769f5795e65fdab80086f6cb7940dae/yolov7detection.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
|
[](https://arxiv.org/abs/2207.02696)
|
|
|
|
<div align="center">
|
|
<a href="./">
|
|
<img src="./figure/performance.png" width="79%"/>
|
|
</a>
|
|
</div>
|
|
|
|
## Web Demo
|
|
|
|
- Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces/akhaliq/yolov7) using Gradio. Try out the Web Demo [](https://huggingface.co/spaces/akhaliq/yolov7)
|
|
|
|
## Performance
|
|
|
|
MS COCO
|
|
|
|
| Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | batch 1 fps | batch 32 average time |
|
|
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
|
|
| [**YOLOv7**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) | 640 | **51.4%** | **69.7%** | **55.9%** | 161 *fps* | 2.8 *ms* |
|
|
| [**YOLOv7-X**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) | 640 | **53.1%** | **71.2%** | **57.8%** | 114 *fps* | 4.3 *ms* |
|
|
| | | | | | | |
|
|
| [**YOLOv7-W6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) | 1280 | **54.9%** | **72.6%** | **60.1%** | 84 *fps* | 7.6 *ms* |
|
|
| [**YOLOv7-E6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) | 1280 | **56.0%** | **73.5%** | **61.2%** | 56 *fps* | 12.3 *ms* |
|
|
| [**YOLOv7-D6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) | 1280 | **56.6%** | **74.0%** | **61.8%** | 44 *fps* | 15.0 *ms* |
|
|
| [**YOLOv7-E6E**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) | 1280 | **56.8%** | **74.4%** | **62.1%** | 36 *fps* | 18.7 *ms* |
|
|
|
|
## Installation
|
|
|
|
Docker environment (recommended)
|
|
<details><summary> <b>Expand</b> </summary>
|
|
|
|
``` shell
|
|
# create the docker container, you can change the share memory size if you have more.
|
|
nvidia-docker run --name yolov7 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3
|
|
|
|
# apt install required packages
|
|
apt update
|
|
apt install -y zip htop screen libgl1-mesa-glx
|
|
|
|
# pip install required packages
|
|
pip install seaborn thop
|
|
|
|
# go to code folder
|
|
cd /yolov7
|
|
```
|
|
|
|
</details>
|
|
|
|
## Testing
|
|
|
|
[`yolov7.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) [`yolov7x.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) [`yolov7-w6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) [`yolov7-e6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) [`yolov7-d6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) [`yolov7-e6e.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt)
|
|
|
|
``` shell
|
|
python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
|
|
```
|
|
|
|
You will get the results:
|
|
|
|
```
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.51206
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.69730
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.55521
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35247
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55937
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66693
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.38453
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.63765
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.68772
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.53766
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.73549
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83868
|
|
```
|
|
|
|
To measure accuracy, download [COCO-annotations for Pycocotools](http://images.cocodataset.org/annotations/annotations_trainval2017.zip).
|
|
|
|
## Training
|
|
|
|
Data preparation
|
|
|
|
``` shell
|
|
bash scripts/get_coco.sh
|
|
```
|
|
|
|
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
|
|
|
|
Single GPU training
|
|
|
|
``` shell
|
|
# train p5 models
|
|
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
|
|
|
|
# train p6 models
|
|
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
|
|
```
|
|
|
|
Multiple GPU training
|
|
|
|
``` shell
|
|
# train p5 models
|
|
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
|
|
|
|
# train p6 models
|
|
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_aux.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
|
|
```
|
|
|
|
## Transfer learning
|
|
|
|
[`yolov7_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7_training.pt) [`yolov7x_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x_training.pt) [`yolov7-w6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6_training.pt) [`yolov7-e6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6_training.pt) [`yolov7-d6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6_training.pt) [`yolov7-e6e_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e_training.pt)
|
|
|
|
Single GPU finetuning for custom dataset
|
|
|
|
``` shell
|
|
# finetune p5 models
|
|
python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml
|
|
|
|
# finetune p6 models
|
|
python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/custom.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6-custom.yaml --weights 'yolov7-w6_training.pt' --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml
|
|
```
|
|
|
|
## Re-parameterization
|
|
|
|
See [reparameterization.ipynb](tools/reparameterization.ipynb)
|
|
|
|
## Pose estimation
|
|
|
|
[`yolov7-w6-pose.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6-pose.pt)
|
|
|
|
See [keypoint.ipynb](https://github.com/WongKinYiu/yolov7/blob/main/tools/keypoint.ipynb).
|
|
|
|
## Inference
|
|
|
|
On video:
|
|
``` shell
|
|
python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source yourvideo.mp4
|
|
```
|
|
|
|
On image:
|
|
``` shell
|
|
python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg
|
|
```
|
|
|
|
<div align="center">
|
|
<a href="./">
|
|
<img src="./figure/horses_prediction.jpg" width="59%"/>
|
|
</a>
|
|
</div>
|
|
|
|
|
|
## Export
|
|
|
|
|
|
**Pytorch to ONNX with NMS (and inference)** <a href="https://colab.research.google.com/github/WongKinYiu/yolov7/blob/main/tools/YOLOv7onnx.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
|
```shell
|
|
python export.py --weights yolov7-tiny.pt --grid --end2end --simplify \
|
|
--topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640
|
|
```
|
|
|
|
**Pytorch to TensorRT with NMS (and inference)** <a href="https://colab.research.google.com/github/WongKinYiu/yolov7/blob/main/tools/YOLOv7trt.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
|
|
|
```shell
|
|
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt
|
|
python export.py --weights ./yolov7-tiny.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640
|
|
git clone https://github.com/Linaom1214/tensorrt-python.git
|
|
python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16
|
|
|
|
# example of inference in C++ https://github.com/Linaom1214/tensorrt-python/tree/main/yolov7/cpp
|
|
```
|
|
|
|
**Pytorch to TensorRT another way** <a href="https://colab.research.google.com/gist/AlexeyAB/fcb47ae544cf284eb24d8ad8e880d45c/yolov7trtlinaom.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <details><summary> <b>Expand</b> </summary>
|
|
|
|
|
|
```shell
|
|
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt
|
|
python export.py --weights yolov7-tiny.pt --grid --include-nms
|
|
git clone https://github.com/Linaom1214/tensorrt-python.git
|
|
python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16
|
|
|
|
# Or use trtexec to convert ONNX to TensorRT engine
|
|
/usr/src/tensorrt/bin/trtexec --onnx=yolov7-tiny.onnx --saveEngine=yolov7-tiny-nms.trt --fp16
|
|
```
|
|
|
|
</details>
|
|
|
|
Tested with: Python 3.7.13, Pytorch 1.12.0+cu113
|
|
|
|
|
|
## Citation
|
|
|
|
```
|
|
@article{wang2022yolov7,
|
|
title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
|
|
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
|
|
journal={arXiv preprint arXiv:2207.02696},
|
|
year={2022}
|
|
}
|
|
```
|
|
|
|
## Teaser
|
|
|
|
Yolov7-mask & YOLOv7-pose
|
|
|
|
<div align="center">
|
|
<a href="./">
|
|
<img src="./figure/mask.png" width="56%"/>
|
|
</a>
|
|
<a href="./">
|
|
<img src="./figure/pose.png" width="42%"/>
|
|
</a>
|
|
</div>
|
|
|
|
|
|
## Acknowledgements
|
|
|
|
<details><summary> <b>Expand</b> </summary>
|
|
|
|
* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
|
|
* [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor)
|
|
* [https://github.com/WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4)
|
|
* [https://github.com/WongKinYiu/ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)
|
|
* [https://github.com/Megvii-BaseDetection/YOLOX](https://github.com/Megvii-BaseDetection/YOLOX)
|
|
* [https://github.com/ultralytics/yolov3](https://github.com/ultralytics/yolov3)
|
|
* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)
|
|
* [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG)
|
|
* [https://github.com/JUGGHM/OREPA_CVPR2022](https://github.com/JUGGHM/OREPA_CVPR2022)
|
|
* [https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose](https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose)
|
|
|
|
</details>
|