mirror of https://github.com/WongKinYiu/yolov7.git
151 lines
5.4 KiB
Python
151 lines
5.4 KiB
Python
import numpy as np
|
|
import onnx
|
|
from onnx import shape_inference
|
|
import onnx_graphsurgeon as gs
|
|
import logging
|
|
|
|
LOGGER = logging.getLogger(__name__)
|
|
|
|
class RegisterNMS(object):
|
|
def __init__(
|
|
self,
|
|
onnx_model_path: str,
|
|
precision: str = "fp32",
|
|
):
|
|
|
|
self.graph = gs.import_onnx(onnx.load(onnx_model_path))
|
|
assert self.graph
|
|
LOGGER.info("ONNX graph created successfully")
|
|
# Fold constants via ONNX-GS that PyTorch2ONNX may have missed
|
|
self.graph.fold_constants()
|
|
self.precision = precision
|
|
self.batch_size = 1
|
|
def infer(self):
|
|
"""
|
|
Sanitize the graph by cleaning any unconnected nodes, do a topological resort,
|
|
and fold constant inputs values. When possible, run shape inference on the
|
|
ONNX graph to determine tensor shapes.
|
|
"""
|
|
for _ in range(3):
|
|
count_before = len(self.graph.nodes)
|
|
|
|
self.graph.cleanup().toposort()
|
|
try:
|
|
for node in self.graph.nodes:
|
|
for o in node.outputs:
|
|
o.shape = None
|
|
model = gs.export_onnx(self.graph)
|
|
model = shape_inference.infer_shapes(model)
|
|
self.graph = gs.import_onnx(model)
|
|
except Exception as e:
|
|
LOGGER.info(f"Shape inference could not be performed at this time:\n{e}")
|
|
try:
|
|
self.graph.fold_constants(fold_shapes=True)
|
|
except TypeError as e:
|
|
LOGGER.error(
|
|
"This version of ONNX GraphSurgeon does not support folding shapes, "
|
|
f"please upgrade your onnx_graphsurgeon module. Error:\n{e}"
|
|
)
|
|
raise
|
|
|
|
count_after = len(self.graph.nodes)
|
|
if count_before == count_after:
|
|
# No new folding occurred in this iteration, so we can stop for now.
|
|
break
|
|
|
|
def save(self, output_path):
|
|
"""
|
|
Save the ONNX model to the given location.
|
|
Args:
|
|
output_path: Path pointing to the location where to write
|
|
out the updated ONNX model.
|
|
"""
|
|
self.graph.cleanup().toposort()
|
|
model = gs.export_onnx(self.graph)
|
|
onnx.save(model, output_path)
|
|
LOGGER.info(f"Saved ONNX model to {output_path}")
|
|
|
|
def register_nms(
|
|
self,
|
|
*,
|
|
score_thresh: float = 0.25,
|
|
nms_thresh: float = 0.45,
|
|
detections_per_img: int = 100,
|
|
):
|
|
"""
|
|
Register the ``EfficientNMS_TRT`` plugin node.
|
|
NMS expects these shapes for its input tensors:
|
|
- box_net: [batch_size, number_boxes, 4]
|
|
- class_net: [batch_size, number_boxes, number_labels]
|
|
Args:
|
|
score_thresh (float): The scalar threshold for score (low scoring boxes are removed).
|
|
nms_thresh (float): The scalar threshold for IOU (new boxes that have high IOU
|
|
overlap with previously selected boxes are removed).
|
|
detections_per_img (int): Number of best detections to keep after NMS.
|
|
"""
|
|
|
|
self.infer()
|
|
# Find the concat node at the end of the network
|
|
op_inputs = self.graph.outputs
|
|
op = "EfficientNMS_TRT"
|
|
attrs = {
|
|
"plugin_version": "1",
|
|
"background_class": -1, # no background class
|
|
"max_output_boxes": detections_per_img,
|
|
"score_threshold": score_thresh,
|
|
"iou_threshold": nms_thresh,
|
|
"score_activation": False,
|
|
"box_coding": 0,
|
|
}
|
|
|
|
if self.precision == "fp32":
|
|
dtype_output = np.float32
|
|
elif self.precision == "fp16":
|
|
dtype_output = np.float16
|
|
else:
|
|
raise NotImplementedError(f"Currently not supports precision: {self.precision}")
|
|
|
|
# NMS Outputs
|
|
output_num_detections = gs.Variable(
|
|
name="num_detections",
|
|
dtype=np.int32,
|
|
shape=[self.batch_size, 1],
|
|
) # A scalar indicating the number of valid detections per batch image.
|
|
output_boxes = gs.Variable(
|
|
name="detection_boxes",
|
|
dtype=dtype_output,
|
|
shape=[self.batch_size, detections_per_img, 4],
|
|
)
|
|
output_scores = gs.Variable(
|
|
name="detection_scores",
|
|
dtype=dtype_output,
|
|
shape=[self.batch_size, detections_per_img],
|
|
)
|
|
output_labels = gs.Variable(
|
|
name="detection_classes",
|
|
dtype=np.int32,
|
|
shape=[self.batch_size, detections_per_img],
|
|
)
|
|
|
|
op_outputs = [output_num_detections, output_boxes, output_scores, output_labels]
|
|
|
|
# Create the NMS Plugin node with the selected inputs. The outputs of the node will also
|
|
# become the final outputs of the graph.
|
|
self.graph.layer(op=op, name="batched_nms", inputs=op_inputs, outputs=op_outputs, attrs=attrs)
|
|
LOGGER.info(f"Created NMS plugin '{op}' with attributes: {attrs}")
|
|
|
|
self.graph.outputs = op_outputs
|
|
|
|
self.infer()
|
|
|
|
def save(self, output_path):
|
|
"""
|
|
Save the ONNX model to the given location.
|
|
Args:
|
|
output_path: Path pointing to the location where to write
|
|
out the updated ONNX model.
|
|
"""
|
|
self.graph.cleanup().toposort()
|
|
model = gs.export_onnx(self.graph)
|
|
onnx.save(model, output_path)
|
|
LOGGER.info(f"Saved ONNX model to {output_path}") |