mirror of https://github.com/WongKinYiu/yolov7.git
143 lines
7.1 KiB
Markdown
143 lines
7.1 KiB
Markdown
# Official YOLOv7
|
|
|
|
Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
|
|
|
|
<img src="./figure/performance.png" height="480">
|
|
|
|
## Web Demo
|
|
|
|
- Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces/akhaliq/yolov7) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo [](https://huggingface.co/spaces/akhaliq/yolov7)
|
|
|
|
## Performance
|
|
|
|
MS COCO
|
|
|
|
| Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | batch 1 fps | batch 32 average time |
|
|
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
|
|
| [**YOLOv7**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) | 640 | **51.4%** | **69.7%** | **55.9%** | 161 *fps* | 2.8 *ms* |
|
|
| [**YOLOv7-X**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) | 640 | **53.1%** | **71.2%** | **57.8%** | 114 *fps* | 4.3 *ms* |
|
|
| | | | | | | |
|
|
| [**YOLOv7-W6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) | 1280 | **54.9%** | **72.6%** | **60.1%** | 84 *fps* | 7.6 *ms* |
|
|
| [**YOLOv7-E6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) | 1280 | **56.0%** | **73.5%** | **61.2%** | 56 *fps* | 12.3 *ms* |
|
|
| [**YOLOv7-D6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) | 1280 | **56.6%** | **74.0%** | **61.8%** | 44 *fps* | 15.0 *ms* |
|
|
| [**YOLOv7-E6E**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) | 1280 | **56.8%** | **74.4%** | **62.1%** | 36 *fps* | 18.7 *ms* |
|
|
|
|
## Installation
|
|
|
|
Docker environment (recommended)
|
|
<details><summary> <b>Expand</b> </summary>
|
|
|
|
```
|
|
# create the docker container, you can change the share memory size if you have more.
|
|
nvidia-docker run --name yolov7 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3
|
|
|
|
# apt install required packages
|
|
apt update
|
|
apt install -y zip htop screen libgl1-mesa-glx
|
|
|
|
# pip install required packages
|
|
pip install seaborn thop
|
|
|
|
# go to code folder
|
|
cd /yolov7
|
|
```
|
|
|
|
</details>
|
|
|
|
## Testing
|
|
|
|
[`yolov7.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) [`yolov7x.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) [`yolov7-w6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) [`yolov7-e6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) [`yolov7-d6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) [`yolov7-e6e.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt)
|
|
|
|
```
|
|
python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
|
|
```
|
|
|
|
You will get the results:
|
|
|
|
```
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.51206
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.69730
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.55521
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35247
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55937
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66693
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.38453
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.63765
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.68772
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.53766
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.73549
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83868
|
|
```
|
|
|
|
To measure accuracy, download [COCO-annotations for Pycocotools](http://images.cocodataset.org/annotations/annotations_trainval2017.zip).
|
|
|
|
## Training
|
|
|
|
Single GPU training
|
|
|
|
```
|
|
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
|
|
|
|
python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7x.yaml --weights '' --name yolov7x --hyp data/hyp.scratch.p5.yaml
|
|
```
|
|
|
|
Multiple GPU training
|
|
|
|
```
|
|
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
|
|
|
|
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7x.yaml --weights '' --name yolov7x --hyp data/hyp.scratch.p5.yaml
|
|
```
|
|
|
|
The training code and instruction of p6 models will release soon.
|
|
|
|
Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
|
|
|
|
## Re-parameterization
|
|
|
|
The re-parameterization code and instruction will release soon.
|
|
|
|
## Inference
|
|
|
|
`python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg`
|
|
|
|
## Citation
|
|
|
|
```
|
|
@article{wang2022yolov7,
|
|
title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
|
|
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
|
|
journal={arXiv preprint arXiv:2207.02696},
|
|
year={2022}
|
|
}
|
|
```
|
|
|
|
## Teaser
|
|
|
|
Yolov7-mask & YOLOv7-pose
|
|
|
|
<div align="center">
|
|
<a href="./">
|
|
<img src="./figure/mask.png" width="56%"/>
|
|
</a>
|
|
<a href="./">
|
|
<img src="./figure/pose.png" width="42%"/>
|
|
</a>
|
|
</div>
|
|
|
|
## Acknowledgements
|
|
|
|
<details><summary> <b>Expand</b> </summary>
|
|
|
|
* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
|
|
* [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor)
|
|
* [https://github.com/WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4)
|
|
* [https://github.com/WongKinYiu/ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)
|
|
* [https://github.com/Megvii-BaseDetection/YOLOX](https://github.com/Megvii-BaseDetection/YOLOX)
|
|
* [https://github.com/ultralytics/yolov3](https://github.com/ultralytics/yolov3)
|
|
* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)
|
|
* [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG)
|
|
* [https://github.com/JUGGHM/OREPA_CVPR2022](https://github.com/JUGGHM/OREPA_CVPR2022)
|
|
|
|
</details>
|