mirror of https://github.com/RE-OWOD/RE-OWOD
106 lines
4.3 KiB
Markdown
106 lines
4.3 KiB
Markdown
|
# Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
|
||
|
|
||
|
Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang, Hartwig Adam, Liang-Chieh Chen
|
||
|
|
||
|
[[`arXiv`](https://arxiv.org/abs/1911.10194)] [[`BibTeX`](#CitingPanopticDeepLab)] [[`Reference implementation`](https://github.com/bowenc0221/panoptic-deeplab)]
|
||
|
|
||
|
<div align="center">
|
||
|
<img src="https://github.com/bowenc0221/panoptic-deeplab/blob/master/docs/panoptic_deeplab.png"/>
|
||
|
</div><br/>
|
||
|
|
||
|
## Installation
|
||
|
Install Detectron2 following [the instructions](https://detectron2.readthedocs.io/tutorials/install.html).
|
||
|
|
||
|
## Training
|
||
|
|
||
|
To train a model with 8 GPUs run:
|
||
|
```bash
|
||
|
cd /path/to/detectron2/projects/Panoptic-DeepLab
|
||
|
python train_net.py --config-file config/Cityscapes-PanopticSegmentation/panoptic_deeplab_R_52_os16_mg124_poly_90k_bs32_crop_512_1024.yaml --num-gpus 8
|
||
|
```
|
||
|
|
||
|
## Evaluation
|
||
|
|
||
|
Model evaluation can be done similarly:
|
||
|
```bash
|
||
|
cd /path/to/detectron2/projects/Panoptic-DeepLab
|
||
|
python train_net.py --config-file config/Cityscapes-PanopticSegmentation/panoptic_deeplab_R_52_os16_mg124_poly_90k_bs32_crop_512_1024.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint
|
||
|
```
|
||
|
|
||
|
## Cityscapes Panoptic Segmentation
|
||
|
Cityscapes models are trained with ImageNet pretraining.
|
||
|
|
||
|
<table><tbody>
|
||
|
<!-- START TABLE -->
|
||
|
<!-- TABLE HEADER -->
|
||
|
<th valign="bottom">Method</th>
|
||
|
<th valign="bottom">Backbone</th>
|
||
|
<th valign="bottom">Output<br/>resolution</th>
|
||
|
<th valign="bottom">PQ</th>
|
||
|
<th valign="bottom">SQ</th>
|
||
|
<th valign="bottom">RQ</th>
|
||
|
<th valign="bottom">mIoU</th>
|
||
|
<th valign="bottom">AP</th>
|
||
|
<th valign="bottom">Memory (M)</th>
|
||
|
<th valign="bottom">model id</th>
|
||
|
<th valign="bottom">download</th>
|
||
|
<!-- TABLE BODY -->
|
||
|
<tr><td align="left">Panoptic-DeepLab</td>
|
||
|
<td align="center">R50-DC5</td>
|
||
|
<td align="center">1024×2048</td>
|
||
|
<td align="center"> 58.6 </td>
|
||
|
<td align="center"> 80.9 </td>
|
||
|
<td align="center"> 71.2 </td>
|
||
|
<td align="center"> 75.9 </td>
|
||
|
<td align="center"> 29.8 </td>
|
||
|
<td align="center"> 8668 </td>
|
||
|
<td align="center"> - </td>
|
||
|
<td align="center">model | metrics</td>
|
||
|
</tr>
|
||
|
<tr><td align="left"><a href="config/Cityscapes-PanopticSegmentation/panoptic_deeplab_R_52_os16_mg124_poly_90k_bs32_crop_512_1024.yaml">Panoptic-DeepLab</a></td>
|
||
|
<td align="center">R52-DC5</td>
|
||
|
<td align="center">1024×2048</td>
|
||
|
<td align="center"> 60.3 </td>
|
||
|
<td align="center"> 81.5 </td>
|
||
|
<td align="center"> 72.9 </td>
|
||
|
<td align="center"> 78.2 </td>
|
||
|
<td align="center"> 33.2 </td>
|
||
|
<td align="center"> 9682 </td>
|
||
|
<td align="center"> </td>
|
||
|
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PanopticDeepLab/Cityscapes-PanopticSegmentation/panoptic_deeplab_R_52_os16_mg124_poly_90k_bs32/model_final_380d9c.pkl
|
||
|
">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PanopticDeepLab/Cityscapes-PanopticSegmentation/panoptic_deeplab_R_52_os16_mg124_poly_90k_bs32/metrics.json
|
||
|
">metrics</a></td>
|
||
|
</tr>
|
||
|
</tbody></table>
|
||
|
|
||
|
Note:
|
||
|
- [R52](https://dl.fbaipublicfiles.com/detectron2/DeepLab/R-52.pkl): a ResNet-50 with its first 7x7 convolution replaced by 3 3x3 convolutions. This modification has been used in most semantic segmentation papers. We pre-train this backbone on ImageNet using the default recipe of [pytorch examples](https://github.com/pytorch/examples/tree/master/imagenet).
|
||
|
- DC5 means using dilated convolution in `res5`.
|
||
|
- We use a smaller training crop size (512x1024) than the original paper (1025x2049), we find using larger crop size (1024x2048) could further improve PQ by 1.5% but also degrades AP by 3%.
|
||
|
|
||
|
## <a name="CitingPanopticDeepLab"></a>Citing Panoptic-DeepLab
|
||
|
|
||
|
If you use Panoptic-DeepLab, please use the following BibTeX entry.
|
||
|
|
||
|
* CVPR 2020 paper:
|
||
|
|
||
|
```
|
||
|
@inproceedings{cheng2020panoptic,
|
||
|
title={Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation},
|
||
|
author={Cheng, Bowen and Collins, Maxwell D and Zhu, Yukun and Liu, Ting and Huang, Thomas S and Adam, Hartwig and Chen, Liang-Chieh},
|
||
|
booktitle={CVPR},
|
||
|
year={2020}
|
||
|
}
|
||
|
```
|
||
|
|
||
|
* ICCV 2019 COCO-Mapillary workshp challenge report:
|
||
|
|
||
|
```
|
||
|
@inproceedings{cheng2019panoptic,
|
||
|
title={Panoptic-DeepLab},
|
||
|
author={Cheng, Bowen and Collins, Maxwell D and Zhu, Yukun and Liu, Ting and Huang, Thomas S and Adam, Hartwig and Chen, Liang-Chieh},
|
||
|
booktitle={ICCV COCO + Mapillary Joint Recognition Challenge Workshop},
|
||
|
year={2019}
|
||
|
}
|
||
|
```
|