mirror of https://github.com/RE-OWOD/RE-OWOD
197 lines
6.9 KiB
Python
197 lines
6.9 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
||
|
|
||
|
"""
|
||
|
Panoptic-DeepLab Training Script.
|
||
|
This script is a simplified version of the training script in detectron2/tools.
|
||
|
"""
|
||
|
|
||
|
import os
|
||
|
from typing import Any, Dict, List, Set
|
||
|
import torch
|
||
|
|
||
|
import detectron2.data.transforms as T
|
||
|
import detectron2.utils.comm as comm
|
||
|
from detectron2.checkpoint import DetectionCheckpointer
|
||
|
from detectron2.config import get_cfg
|
||
|
from detectron2.data import MetadataCatalog, build_detection_train_loader
|
||
|
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
|
||
|
from detectron2.evaluation import (
|
||
|
CityscapesInstanceEvaluator,
|
||
|
CityscapesSemSegEvaluator,
|
||
|
COCOEvaluator,
|
||
|
COCOPanopticEvaluator,
|
||
|
DatasetEvaluators,
|
||
|
)
|
||
|
from detectron2.projects.deeplab import build_lr_scheduler
|
||
|
from detectron2.projects.panoptic_deeplab import (
|
||
|
PanopticDeeplabDatasetMapper,
|
||
|
add_panoptic_deeplab_config,
|
||
|
)
|
||
|
from detectron2.solver.build import maybe_add_gradient_clipping
|
||
|
|
||
|
|
||
|
def build_sem_seg_train_aug(cfg):
|
||
|
augs = [
|
||
|
T.ResizeShortestEdge(
|
||
|
cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
|
||
|
)
|
||
|
]
|
||
|
if cfg.INPUT.CROP.ENABLED:
|
||
|
augs.append(T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE))
|
||
|
augs.append(T.RandomFlip())
|
||
|
return augs
|
||
|
|
||
|
|
||
|
class Trainer(DefaultTrainer):
|
||
|
"""
|
||
|
We use the "DefaultTrainer" which contains a number pre-defined logic for
|
||
|
standard training workflow. They may not work for you, especially if you
|
||
|
are working on a new research project. In that case you can use the cleaner
|
||
|
"SimpleTrainer", or write your own training loop.
|
||
|
"""
|
||
|
|
||
|
@classmethod
|
||
|
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
|
||
|
"""
|
||
|
Create evaluator(s) for a given dataset.
|
||
|
This uses the special metadata "evaluator_type" associated with each builtin dataset.
|
||
|
For your own dataset, you can simply create an evaluator manually in your
|
||
|
script and do not have to worry about the hacky if-else logic here.
|
||
|
"""
|
||
|
if output_folder is None:
|
||
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
|
||
|
evaluator_list = []
|
||
|
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
|
||
|
if evaluator_type in ["cityscapes_panoptic_seg", "coco_panoptic_seg"]:
|
||
|
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
|
||
|
if evaluator_type == "cityscapes_panoptic_seg":
|
||
|
assert (
|
||
|
torch.cuda.device_count() >= comm.get_rank()
|
||
|
), "CityscapesEvaluator currently do not work with multiple machines."
|
||
|
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name))
|
||
|
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
|
||
|
if evaluator_type == "coco_panoptic_seg":
|
||
|
# Evaluate bbox and segm.
|
||
|
cfg.defrost()
|
||
|
cfg.MODEL.MASK_ON = True
|
||
|
cfg.MODEL.KEYPOINT_ON = False
|
||
|
cfg.freeze()
|
||
|
evaluator_list.append(COCOEvaluator(dataset_name, cfg, True, output_folder))
|
||
|
if len(evaluator_list) == 0:
|
||
|
raise NotImplementedError(
|
||
|
"no Evaluator for the dataset {} with the type {}".format(
|
||
|
dataset_name, evaluator_type
|
||
|
)
|
||
|
)
|
||
|
elif len(evaluator_list) == 1:
|
||
|
return evaluator_list[0]
|
||
|
return DatasetEvaluators(evaluator_list)
|
||
|
|
||
|
@classmethod
|
||
|
def build_train_loader(cls, cfg):
|
||
|
mapper = PanopticDeeplabDatasetMapper(cfg, augmentations=build_sem_seg_train_aug(cfg))
|
||
|
return build_detection_train_loader(cfg, mapper=mapper)
|
||
|
|
||
|
@classmethod
|
||
|
def build_lr_scheduler(cls, cfg, optimizer):
|
||
|
"""
|
||
|
It now calls :func:`detectron2.solver.build_lr_scheduler`.
|
||
|
Overwrite it if you'd like a different scheduler.
|
||
|
"""
|
||
|
return build_lr_scheduler(cfg, optimizer)
|
||
|
|
||
|
@classmethod
|
||
|
def build_optimizer(cls, cfg, model):
|
||
|
"""
|
||
|
Build an optimizer from config.
|
||
|
"""
|
||
|
norm_module_types = (
|
||
|
torch.nn.BatchNorm1d,
|
||
|
torch.nn.BatchNorm2d,
|
||
|
torch.nn.BatchNorm3d,
|
||
|
torch.nn.SyncBatchNorm,
|
||
|
# NaiveSyncBatchNorm inherits from BatchNorm2d
|
||
|
torch.nn.GroupNorm,
|
||
|
torch.nn.InstanceNorm1d,
|
||
|
torch.nn.InstanceNorm2d,
|
||
|
torch.nn.InstanceNorm3d,
|
||
|
torch.nn.LayerNorm,
|
||
|
torch.nn.LocalResponseNorm,
|
||
|
)
|
||
|
params: List[Dict[str, Any]] = []
|
||
|
memo: Set[torch.nn.parameter.Parameter] = set()
|
||
|
for module in model.modules():
|
||
|
for key, value in module.named_parameters(recurse=False):
|
||
|
if not value.requires_grad:
|
||
|
continue
|
||
|
# Avoid duplicating parameters
|
||
|
if value in memo:
|
||
|
continue
|
||
|
memo.add(value)
|
||
|
lr = cfg.SOLVER.BASE_LR
|
||
|
weight_decay = cfg.SOLVER.WEIGHT_DECAY
|
||
|
if isinstance(module, norm_module_types):
|
||
|
weight_decay = cfg.SOLVER.WEIGHT_DECAY_NORM
|
||
|
elif key == "bias":
|
||
|
lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR
|
||
|
weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS
|
||
|
params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}]
|
||
|
|
||
|
optimizer_type = cfg.SOLVER.OPTIMIZER
|
||
|
if optimizer_type == "SGD":
|
||
|
optimizer = torch.optim.SGD(
|
||
|
params,
|
||
|
cfg.SOLVER.BASE_LR,
|
||
|
momentum=cfg.SOLVER.MOMENTUM,
|
||
|
nesterov=cfg.SOLVER.NESTEROV,
|
||
|
)
|
||
|
elif optimizer_type == "ADAM":
|
||
|
optimizer = torch.optim.Adam(params, cfg.SOLVER.BASE_LR)
|
||
|
else:
|
||
|
raise NotImplementedError(f"no optimizer type {optimizer_type}")
|
||
|
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
|
||
|
return optimizer
|
||
|
|
||
|
|
||
|
def setup(args):
|
||
|
"""
|
||
|
Create configs and perform basic setups.
|
||
|
"""
|
||
|
cfg = get_cfg()
|
||
|
add_panoptic_deeplab_config(cfg)
|
||
|
cfg.merge_from_file(args.config_file)
|
||
|
cfg.merge_from_list(args.opts)
|
||
|
cfg.freeze()
|
||
|
default_setup(cfg, args)
|
||
|
return cfg
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
cfg = setup(args)
|
||
|
|
||
|
if args.eval_only:
|
||
|
model = Trainer.build_model(cfg)
|
||
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
|
||
|
cfg.MODEL.WEIGHTS, resume=args.resume
|
||
|
)
|
||
|
res = Trainer.test(cfg, model)
|
||
|
return res
|
||
|
|
||
|
trainer = Trainer(cfg)
|
||
|
trainer.resume_or_load(resume=args.resume)
|
||
|
return trainer.train()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
args = default_argument_parser().parse_args()
|
||
|
print("Command Line Args:", args)
|
||
|
launch(
|
||
|
main,
|
||
|
args.num_gpus,
|
||
|
num_machines=args.num_machines,
|
||
|
machine_rank=args.machine_rank,
|
||
|
dist_url=args.dist_url,
|
||
|
args=(args,),
|
||
|
)
|