mirror of https://github.com/RE-OWOD/RE-OWOD
51 lines
1.7 KiB
Python
51 lines
1.7 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
||
|
|
||
|
from detectron2.config import CfgNode as CN
|
||
|
|
||
|
|
||
|
def add_tensormask_config(cfg):
|
||
|
"""
|
||
|
Add config for TensorMask.
|
||
|
"""
|
||
|
cfg.MODEL.TENSOR_MASK = CN()
|
||
|
|
||
|
# Anchor parameters
|
||
|
cfg.MODEL.TENSOR_MASK.IN_FEATURES = ["p2", "p3", "p4", "p5", "p6", "p7"]
|
||
|
|
||
|
# Convolutions to use in the towers
|
||
|
cfg.MODEL.TENSOR_MASK.NUM_CONVS = 4
|
||
|
|
||
|
# Number of foreground classes.
|
||
|
cfg.MODEL.TENSOR_MASK.NUM_CLASSES = 80
|
||
|
# Channel size for the classification tower
|
||
|
cfg.MODEL.TENSOR_MASK.CLS_CHANNELS = 256
|
||
|
|
||
|
cfg.MODEL.TENSOR_MASK.SCORE_THRESH_TEST = 0.05
|
||
|
# Only the top (1000 * #levels) candidate boxes across all levels are
|
||
|
# considered jointly during test (to improve speed)
|
||
|
cfg.MODEL.TENSOR_MASK.TOPK_CANDIDATES_TEST = 6000
|
||
|
cfg.MODEL.TENSOR_MASK.NMS_THRESH_TEST = 0.5
|
||
|
|
||
|
# Box parameters
|
||
|
# Channel size for the box tower
|
||
|
cfg.MODEL.TENSOR_MASK.BBOX_CHANNELS = 128
|
||
|
# Weights on (dx, dy, dw, dh)
|
||
|
cfg.MODEL.TENSOR_MASK.BBOX_REG_WEIGHTS = (1.5, 1.5, 0.75, 0.75)
|
||
|
|
||
|
# Loss parameters
|
||
|
cfg.MODEL.TENSOR_MASK.FOCAL_LOSS_GAMMA = 3.0
|
||
|
cfg.MODEL.TENSOR_MASK.FOCAL_LOSS_ALPHA = 0.3
|
||
|
|
||
|
# Mask parameters
|
||
|
# Channel size for the mask tower
|
||
|
cfg.MODEL.TENSOR_MASK.MASK_CHANNELS = 128
|
||
|
# Mask loss weight
|
||
|
cfg.MODEL.TENSOR_MASK.MASK_LOSS_WEIGHT = 2.0
|
||
|
# weight on positive pixels within the mask
|
||
|
cfg.MODEL.TENSOR_MASK.POSITIVE_WEIGHT = 1.5
|
||
|
# Whether to predict in the aligned representation
|
||
|
cfg.MODEL.TENSOR_MASK.ALIGNED_ON = False
|
||
|
# Whether to use the bipyramid architecture
|
||
|
cfg.MODEL.TENSOR_MASK.BIPYRAMID_ON = False
|