import cv2 import sys # from drawBoxes import draw_boxes import time import torch import matplotlib.pyplot as plt from selective_search import selective_search import numpy as np t1_train_file_path = "/home/selective_search/all_task_test.txt" with open(t1_train_file_path, 'r') as t1_train_file: t1_train_list = t1_train_file.read().splitlines() for image_num,image_name in enumerate(t1_train_list): image_name = t1_train_list[image_num] image_path = "/home//datasets/VOC2007/JPEGImages/" + image_name + ".jpg" img = cv2.imread(image_path)[:, :, ::-1] img_rgb = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) try: boxes = selective_search(img_rgb, mode='single', random_sort=False) new_flag = True for boxes_i in boxes: if new_flag: boxes_sum = np.array(boxes_i).reshape(1,4) new_flag = False else: boxes_sum = np.r_[boxes_sum,np.array(boxes_i).reshape(1,4)] boxes_draw = boxes_sum[:50,:] img_save = {'image_size':img.shape[0:2],'obj_boxes':boxes_draw} except: print("cannot compute score:",image_name) boxes_draw = [] img_save = {'image_size':img.shape[0:2],'obj_boxes':boxes_draw} error_save_path = "/home/selective_search_save/selective_search_test_error/" + image_name + ".pickle" torch.save(img_save, error_save_path) img_save_path = "/home/selective_search_save/selective_search_test/" + image_name + ".pickle" torch.save(img_save, img_save_path) print("image_num:",image_num)