# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import unittest from copy import deepcopy import torch from detectron2.config import get_cfg from detectron2.export.torchscript import patch_instances from detectron2.layers import ShapeSpec from detectron2.modeling.proposal_generator.build import build_proposal_generator from detectron2.modeling.roi_heads import ( FastRCNNConvFCHead, KRCNNConvDeconvUpsampleHead, MaskRCNNConvUpsampleHead, StandardROIHeads, build_roi_heads, ) from detectron2.structures import BitMasks, Boxes, ImageList, Instances, RotatedBoxes from detectron2.utils.env import TORCH_VERSION from detectron2.utils.events import EventStorage logger = logging.getLogger(__name__) """ Make sure the losses of ROIHeads/RPN do not change, to avoid breaking the forward logic by mistake. This relies on assumption that pytorch's RNG is stable. """ class ROIHeadsTest(unittest.TestCase): def test_roi_heads(self): torch.manual_seed(121) cfg = get_cfg() cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2" cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5) cfg.MODEL.MASK_ON = True num_images = 2 images_tensor = torch.rand(num_images, 20, 30) image_sizes = [(10, 10), (20, 30)] images = ImageList(images_tensor, image_sizes) num_channels = 1024 features = {"res4": torch.rand(num_images, num_channels, 1, 2)} feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} image_shape = (15, 15) gt_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) gt_instance0 = Instances(image_shape) gt_instance0.gt_boxes = Boxes(gt_boxes0) gt_instance0.gt_classes = torch.tensor([2, 1]) gt_instance0.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5) gt_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32) gt_instance1 = Instances(image_shape) gt_instance1.gt_boxes = Boxes(gt_boxes1) gt_instance1.gt_classes = torch.tensor([1, 2]) gt_instance1.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5) gt_instances = [gt_instance0, gt_instance1] proposal_generator = build_proposal_generator(cfg, feature_shape) roi_heads = StandardROIHeads(cfg, feature_shape) with EventStorage(): # capture events in a new storage to discard them proposals, proposal_losses = proposal_generator(images, features, gt_instances) _, detector_losses = roi_heads(images, features, proposals, gt_instances) detector_losses.update(proposal_losses) expected_losses = { "loss_cls": 4.5253729820251465, "loss_box_reg": 0.009785720147192478, "loss_mask": 0.693184494972229, "loss_rpn_cls": 0.08186662942171097, "loss_rpn_loc": 0.1104838103055954, } succ = all( torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0))) for name in detector_losses.keys() ) self.assertTrue( succ, "Losses has changed! New losses: {}".format( {k: v.item() for k, v in detector_losses.items()} ), ) def test_rroi_heads(self): torch.manual_seed(121) cfg = get_cfg() cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN" cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator" cfg.MODEL.ROI_HEADS.NAME = "RROIHeads" cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1) cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead" cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignRotated" cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5, 1) num_images = 2 images_tensor = torch.rand(num_images, 20, 30) image_sizes = [(10, 10), (20, 30)] images = ImageList(images_tensor, image_sizes) num_channels = 1024 features = {"res4": torch.rand(num_images, num_channels, 1, 2)} feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} image_shape = (15, 15) gt_boxes0 = torch.tensor([[2, 2, 2, 2, 30], [4, 4, 4, 4, 0]], dtype=torch.float32) gt_instance0 = Instances(image_shape) gt_instance0.gt_boxes = RotatedBoxes(gt_boxes0) gt_instance0.gt_classes = torch.tensor([2, 1]) gt_boxes1 = torch.tensor([[1.5, 5.5, 1, 3, 0], [8.5, 4, 3, 2, -50]], dtype=torch.float32) gt_instance1 = Instances(image_shape) gt_instance1.gt_boxes = RotatedBoxes(gt_boxes1) gt_instance1.gt_classes = torch.tensor([1, 2]) gt_instances = [gt_instance0, gt_instance1] proposal_generator = build_proposal_generator(cfg, feature_shape) roi_heads = build_roi_heads(cfg, feature_shape) with EventStorage(): # capture events in a new storage to discard them proposals, proposal_losses = proposal_generator(images, features, gt_instances) _, detector_losses = roi_heads(images, features, proposals, gt_instances) detector_losses.update(proposal_losses) expected_losses = { "loss_cls": 4.365657806396484, "loss_box_reg": 0.0015851043863222003, "loss_rpn_cls": 0.2427729219198227, "loss_rpn_loc": 0.3646621108055115, } succ = all( torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0))) for name in detector_losses.keys() ) self.assertTrue( succ, "Losses has changed! New losses: {}".format( {k: v.item() for k, v in detector_losses.items()} ), ) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_box_head_scriptability(self): input_shape = ShapeSpec(channels=1024, height=14, width=14) box_features = torch.randn(4, 1024, 14, 14) box_head = FastRCNNConvFCHead( input_shape, conv_dims=[512, 512], fc_dims=[1024, 1024] ).eval() script_box_head = torch.jit.script(box_head) origin_output = box_head(box_features) script_output = script_box_head(box_features) self.assertTrue(torch.equal(origin_output, script_output)) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_mask_head_scriptability(self): input_shape = ShapeSpec(channels=1024) mask_features = torch.randn(4, 1024, 14, 14) image_shapes = [(10, 10), (15, 15)] pred_instance0 = Instances(image_shapes[0]) pred_classes0 = torch.tensor([1, 2, 3], dtype=torch.int64) pred_instance0.pred_classes = pred_classes0 pred_instance1 = Instances(image_shapes[1]) pred_classes1 = torch.tensor([4], dtype=torch.int64) pred_instance1.pred_classes = pred_classes1 mask_head = MaskRCNNConvUpsampleHead( input_shape, num_classes=80, conv_dims=[256, 256] ).eval() # pred_instance will be in-place changed during the inference # process of `MaskRCNNConvUpsampleHead` origin_outputs = mask_head(mask_features, deepcopy([pred_instance0, pred_instance1])) fields = {"pred_masks": "Tensor", "pred_classes": "Tensor"} with patch_instances(fields) as NewInstances: sciript_mask_head = torch.jit.script(mask_head) pred_instance0 = NewInstances.from_instances(pred_instance0) pred_instance1 = NewInstances.from_instances(pred_instance1) script_outputs = sciript_mask_head(mask_features, [pred_instance0, pred_instance1]) for origin_ins, script_ins in zip(origin_outputs, script_outputs): self.assertEqual(origin_ins.image_size, script_ins.image_size) self.assertTrue(torch.equal(origin_ins.pred_classes, script_ins.pred_classes)) self.assertTrue(torch.equal(origin_ins.pred_masks, script_ins.pred_masks)) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_keypoint_head_scriptability(self): input_shape = ShapeSpec(channels=1024, height=14, width=14) keypoint_features = torch.randn(4, 1024, 14, 14) image_shapes = [(10, 10), (15, 15)] pred_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6], [1, 5, 2, 8]], dtype=torch.float32) pred_instance0 = Instances(image_shapes[0]) pred_instance0.pred_boxes = Boxes(pred_boxes0) pred_boxes1 = torch.tensor([[7, 3, 10, 5]], dtype=torch.float32) pred_instance1 = Instances(image_shapes[1]) pred_instance1.pred_boxes = Boxes(pred_boxes1) keypoint_head = KRCNNConvDeconvUpsampleHead( input_shape, num_keypoints=17, conv_dims=[512, 512] ).eval() origin_outputs = keypoint_head( keypoint_features, deepcopy([pred_instance0, pred_instance1]) ) fields = { "pred_boxes": "Boxes", "pred_keypoints": "Tensor", "pred_keypoint_heatmaps": "Tensor", } with patch_instances(fields) as NewInstances: sciript_keypoint_head = torch.jit.script(keypoint_head) pred_instance0 = NewInstances.from_instances(pred_instance0) pred_instance1 = NewInstances.from_instances(pred_instance1) script_outputs = sciript_keypoint_head( keypoint_features, [pred_instance0, pred_instance1] ) for origin_ins, script_ins in zip(origin_outputs, script_outputs): self.assertEqual(origin_ins.image_size, script_ins.image_size) self.assertTrue(torch.equal(origin_ins.pred_keypoints, script_ins.pred_keypoints)) self.assertTrue( torch.equal(origin_ins.pred_keypoint_heatmaps, script_ins.pred_keypoint_heatmaps) ) if __name__ == "__main__": unittest.main()