MODEL: META_ARCHITECTURE: "GeneralizedRCNN" RPN: IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"] PRE_NMS_TOPK_TEST: 6000 POST_NMS_TOPK_TEST: 1000 ROI_HEADS: # NUM_CLASSES: 81 # 0-79 Known class; 80 -> Unknown; 81 -> Background. NUM_CLASSES: 81 IN_FEATURES: ["p2", "p3", "p4", "p5"] NAME: "Res5ROIHeads" WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl" MASK_ON: False RESNETS: DEPTH: 50 OUT_FEATURES: ["res2", "res3", "res4", "res5"] FPN: IN_FEATURES: ["res2", "res3", "res4", "res5"] ANCHOR_GENERATOR: SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps ROI_BOX_HEAD: NAME: "FastRCNNConvFCHead" NUM_FC: 2 POOLER_RESOLUTION: 7 ROI_MASK_HEAD: NAME: "MaskRCNNConvUpsampleHead" NUM_CONV: 4 POOLER_RESOLUTION: 14 INPUT: MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800) MIN_SIZE_TEST: 800 DATASETS: TRAIN: ("coco_2017_train",) TEST: ("coco_2017_val",) SOLVER: IMS_PER_BATCH: 16 BASE_LR: 0.02 STEPS: (60000, 80000) MAX_ITER: 90000 VERSION: 2 OWOD: ENABLE_THRESHOLD_AUTOLABEL_UNK: True NUM_UNK_PER_IMAGE: 1 ENABLE_UNCERTAINITY_AUTOLABEL_UNK: False ENABLE_CLUSTERING: True FEATURE_STORE_SAVE_PATH: 'feature_store' CLUSTERING: ITEMS_PER_CLASS: 20 START_ITER: 0 #1000 UPDATE_MU_ITER: 3000 MOMENTUM: 0.99 Z_DIMENSION: 128