# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import base64 import numpy as np from io import BytesIO from typing import BinaryIO, Dict, List, Optional, Tuple, Union import torch from PIL import Image from torch.nn import functional as F class DensePoseTransformData(object): # Horizontal symmetry label transforms used for horizontal flip MASK_LABEL_SYMMETRIES = [0, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 14] # fmt: off POINT_LABEL_SYMMETRIES = [ 0, 1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23] # noqa # fmt: on def __init__(self, uv_symmetries: Dict[str, torch.Tensor], device: torch.device): self.mask_label_symmetries = DensePoseTransformData.MASK_LABEL_SYMMETRIES self.point_label_symmetries = DensePoseTransformData.POINT_LABEL_SYMMETRIES self.uv_symmetries = uv_symmetries self.device = torch.device("cpu") def to(self, device: torch.device, copy: bool = False) -> "DensePoseTransformData": """ Convert transform data to the specified device Args: device (torch.device): device to convert the data to copy (bool): flag that specifies whether to copy or to reference the data in case the device is the same Return: An instance of `DensePoseTransformData` with data stored on the specified device """ if self.device == device and not copy: return self uv_symmetry_map = {} for key in self.uv_symmetries: uv_symmetry_map[key] = self.uv_symmetries[key].to(device=device, copy=copy) return DensePoseTransformData(uv_symmetry_map, device) @staticmethod def load(io: Union[str, BinaryIO]): """ Args: io: (str or binary file-like object): input file to load data from Returns: An instance of `DensePoseTransformData` with transforms loaded from the file """ import scipy.io uv_symmetry_map = scipy.io.loadmat(io) uv_symmetry_map_torch = {} for key in ["U_transforms", "V_transforms"]: uv_symmetry_map_torch[key] = [] map_src = uv_symmetry_map[key] map_dst = uv_symmetry_map_torch[key] for i in range(map_src.shape[1]): map_dst.append(torch.from_numpy(map_src[0, i]).to(dtype=torch.float)) uv_symmetry_map_torch[key] = torch.stack(map_dst, dim=0) transform_data = DensePoseTransformData(uv_symmetry_map_torch, device=torch.device("cpu")) return transform_data class DensePoseDataRelative(object): """ Dense pose relative annotations that can be applied to any bounding box: x - normalized X coordinates [0, 255] of annotated points y - normalized Y coordinates [0, 255] of annotated points i - body part labels 0,...,24 for annotated points u - body part U coordinates [0, 1] for annotated points v - body part V coordinates [0, 1] for annotated points segm - 256x256 segmentation mask with values 0,...,14 To obtain absolute x and y data wrt some bounding box one needs to first divide the data by 256, multiply by the respective bounding box size and add bounding box offset: x_img = x0 + x_norm * w / 256.0 y_img = y0 + y_norm * h / 256.0 Segmentation masks are typically sampled to get image-based masks. """ # Key for normalized X coordinates in annotation dict X_KEY = "dp_x" # Key for normalized Y coordinates in annotation dict Y_KEY = "dp_y" # Key for U part coordinates in annotation dict U_KEY = "dp_U" # Key for V part coordinates in annotation dict V_KEY = "dp_V" # Key for I point labels in annotation dict I_KEY = "dp_I" # Key for segmentation mask in annotation dict S_KEY = "dp_masks" # Number of body parts in segmentation masks N_BODY_PARTS = 14 # Number of parts in point labels N_PART_LABELS = 24 MASK_SIZE = 256 def __init__(self, annotation, cleanup=False): is_valid, reason_not_valid = DensePoseDataRelative.validate_annotation(annotation) assert is_valid, "Invalid DensePose annotations: {}".format(reason_not_valid) self.x = torch.as_tensor(annotation[DensePoseDataRelative.X_KEY]) self.y = torch.as_tensor(annotation[DensePoseDataRelative.Y_KEY]) self.i = torch.as_tensor(annotation[DensePoseDataRelative.I_KEY]) self.u = torch.as_tensor(annotation[DensePoseDataRelative.U_KEY]) self.v = torch.as_tensor(annotation[DensePoseDataRelative.V_KEY]) self.segm = DensePoseDataRelative.extract_segmentation_mask(annotation) self.device = torch.device("cpu") if cleanup: DensePoseDataRelative.cleanup_annotation(annotation) def to(self, device): if self.device == device: return self new_data = DensePoseDataRelative.__new__(DensePoseDataRelative) new_data.x = self.x new_data.x = self.x.to(device) new_data.y = self.y.to(device) new_data.i = self.i.to(device) new_data.u = self.u.to(device) new_data.v = self.v.to(device) new_data.segm = self.segm.to(device) new_data.device = device return new_data @staticmethod def extract_segmentation_mask(annotation): poly_specs = annotation[DensePoseDataRelative.S_KEY] if isinstance(poly_specs, torch.Tensor): # data is already given as mask tensors, no need to decode return poly_specs import pycocotools.mask as mask_utils segm = torch.zeros((DensePoseDataRelative.MASK_SIZE,) * 2, dtype=torch.float32) for i in range(DensePoseDataRelative.N_BODY_PARTS): poly_i = poly_specs[i] if poly_i: mask_i = mask_utils.decode(poly_i) segm[mask_i > 0] = i + 1 return segm @staticmethod def validate_annotation(annotation): for key in [ DensePoseDataRelative.X_KEY, DensePoseDataRelative.Y_KEY, DensePoseDataRelative.I_KEY, DensePoseDataRelative.U_KEY, DensePoseDataRelative.V_KEY, DensePoseDataRelative.S_KEY, ]: if key not in annotation: return False, "no {key} data in the annotation".format(key=key) return True, None @staticmethod def cleanup_annotation(annotation): for key in [ DensePoseDataRelative.X_KEY, DensePoseDataRelative.Y_KEY, DensePoseDataRelative.I_KEY, DensePoseDataRelative.U_KEY, DensePoseDataRelative.V_KEY, DensePoseDataRelative.S_KEY, ]: if key in annotation: del annotation[key] def apply_transform(self, transforms, densepose_transform_data): self._transform_pts(transforms, densepose_transform_data) self._transform_segm(transforms, densepose_transform_data) def _transform_pts(self, transforms, dp_transform_data): import detectron2.data.transforms as T # NOTE: This assumes that HorizFlipTransform is the only one that does flip do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1 if do_hflip: self.x = self.segm.size(1) - self.x self._flip_iuv_semantics(dp_transform_data) for t in transforms.transforms: if isinstance(t, T.RotationTransform): xy_scale = np.array((t.w, t.h)) / DensePoseDataRelative.MASK_SIZE xy = t.apply_coords(np.stack((self.x, self.y), axis=1) * xy_scale) self.x, self.y = torch.tensor(xy / xy_scale, dtype=self.x.dtype).T def _flip_iuv_semantics(self, dp_transform_data: DensePoseTransformData) -> None: i_old = self.i.clone() uv_symmetries = dp_transform_data.uv_symmetries pt_label_symmetries = dp_transform_data.point_label_symmetries for i in range(self.N_PART_LABELS): if i + 1 in i_old: annot_indices_i = i_old == i + 1 if pt_label_symmetries[i + 1] != i + 1: self.i[annot_indices_i] = pt_label_symmetries[i + 1] u_loc = (self.u[annot_indices_i] * 255).long() v_loc = (self.v[annot_indices_i] * 255).long() self.u[annot_indices_i] = uv_symmetries["U_transforms"][i][v_loc, u_loc].to( device=self.u.device ) self.v[annot_indices_i] = uv_symmetries["V_transforms"][i][v_loc, u_loc].to( device=self.v.device ) def _transform_segm(self, transforms, dp_transform_data): import detectron2.data.transforms as T # NOTE: This assumes that HorizFlipTransform is the only one that does flip do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1 if do_hflip: self.segm = torch.flip(self.segm, [1]) self._flip_segm_semantics(dp_transform_data) for t in transforms.transforms: if isinstance(t, T.RotationTransform): self._transform_segm_rotation(t) def _flip_segm_semantics(self, dp_transform_data): old_segm = self.segm.clone() mask_label_symmetries = dp_transform_data.mask_label_symmetries for i in range(self.N_BODY_PARTS): if mask_label_symmetries[i + 1] != i + 1: self.segm[old_segm == i + 1] = mask_label_symmetries[i + 1] def _transform_segm_rotation(self, rotation): self.segm = F.interpolate(self.segm[None, None, :], (rotation.h, rotation.w)).numpy() self.segm = torch.tensor(rotation.apply_segmentation(self.segm[0, 0]))[None, None, :] self.segm = F.interpolate(self.segm, [DensePoseDataRelative.MASK_SIZE] * 2)[0, 0] def normalized_coords_transform(x0, y0, w, h): """ Coordinates transform that maps top left corner to (-1, -1) and bottom right corner to (1, 1). Used for torch.grid_sample to initialize the grid """ def f(p): return (2 * (p[0] - x0) / w - 1, 2 * (p[1] - y0) / h - 1) return f class DensePoseOutput(object): def __init__(self, S, I, U, V, confidences): """ Args: S (`torch.Tensor`): coarse segmentation tensor of size (N, A, H, W) I (`torch.Tensor`): fine segmentation tensor of size (N, C, H, W) U (`torch.Tensor`): U coordinates for each fine segmentation label of size (N, C, H, W) V (`torch.Tensor`): V coordinates for each fine segmentation label of size (N, C, H, W) confidences (dict of str -> `torch.Tensor`) estimated confidence model parameters """ self.S = S self.I = I # noqa: E741 self.U = U self.V = V self.confidences = confidences self._check_output_dims(S, I, U, V) def _check_output_dims(self, S, I, U, V): assert ( len(S.size()) == 4 ), "Segmentation output should have 4 " "dimensions (NCHW), but has size {}".format( S.size() ) assert ( len(I.size()) == 4 ), "Segmentation output should have 4 " "dimensions (NCHW), but has size {}".format( S.size() ) assert ( len(U.size()) == 4 ), "Segmentation output should have 4 " "dimensions (NCHW), but has size {}".format( S.size() ) assert ( len(V.size()) == 4 ), "Segmentation output should have 4 " "dimensions (NCHW), but has size {}".format( S.size() ) assert len(S) == len(I), ( "Number of output segmentation planes {} " "should be equal to the number of output part index " "planes {}".format(len(S), len(I)) ) assert S.size()[2:] == I.size()[2:], ( "Output segmentation plane size {} " "should be equal to the output part index " "plane size {}".format(S.size()[2:], I.size()[2:]) ) assert I.size() == U.size(), ( "Part index output shape {} " "should be the same as U coordinates output shape {}".format(I.size(), U.size()) ) assert I.size() == V.size(), ( "Part index output shape {} " "should be the same as V coordinates output shape {}".format(I.size(), V.size()) ) def resize(self, image_size_hw): # do nothing - outputs are invariant to resize pass def _crop(self, S, I, U, V, bbox_old_xywh, bbox_new_xywh): """ Resample S, I, U, V from bbox_old to the cropped bbox_new """ x0old, y0old, wold, hold = bbox_old_xywh x0new, y0new, wnew, hnew = bbox_new_xywh tr_coords = normalized_coords_transform(x0old, y0old, wold, hold) topleft = (x0new, y0new) bottomright = (x0new + wnew, y0new + hnew) topleft_norm = tr_coords(topleft) bottomright_norm = tr_coords(bottomright) hsize = S.size(1) wsize = S.size(2) grid = torch.meshgrid( torch.arange( topleft_norm[1], bottomright_norm[1], (bottomright_norm[1] - topleft_norm[1]) / hsize, )[:hsize], torch.arange( topleft_norm[0], bottomright_norm[0], (bottomright_norm[0] - topleft_norm[0]) / wsize, )[:wsize], ) grid = torch.stack(grid, dim=2).to(S.device) assert ( grid.size(0) == hsize ), "Resampled grid expected " "height={}, actual height={}".format(hsize, grid.size(0)) assert grid.size(1) == wsize, "Resampled grid expected " "width={}, actual width={}".format( wsize, grid.size(1) ) S_new = F.grid_sample( S.unsqueeze(0), torch.unsqueeze(grid, 0), mode="bilinear", padding_mode="border", align_corners=True, ).squeeze(0) I_new = F.grid_sample( I.unsqueeze(0), torch.unsqueeze(grid, 0), mode="bilinear", padding_mode="border", align_corners=True, ).squeeze(0) U_new = F.grid_sample( U.unsqueeze(0), torch.unsqueeze(grid, 0), mode="bilinear", padding_mode="border", align_corners=True, ).squeeze(0) V_new = F.grid_sample( V.unsqueeze(0), torch.unsqueeze(grid, 0), mode="bilinear", padding_mode="border", align_corners=True, ).squeeze(0) return S_new, I_new, U_new, V_new def crop(self, indices_cropped, bboxes_old, bboxes_new): """ Crop outputs for selected bounding boxes to the new bounding boxes. """ # VK: cropping is ignored for now # for i, ic in enumerate(indices_cropped): # self.S[ic], self.I[ic], self.U[ic], self.V[ic] = \ # self._crop(self.S[ic], self.I[ic], self.U[ic], self.V[ic], # bboxes_old[i], bboxes_new[i]) pass def hflip(self, transform_data: DensePoseTransformData) -> None: """ Change S, I, U and V to take into account a Horizontal flip. """ if self.I.shape[0] > 0: for el in "SIUV": self.__dict__[el] = torch.flip(self.__dict__[el], [3]) for key in self.confidences: self.confidences[key] = torch.flip(self.confidences[key], [3]) self._flip_iuv_semantics_tensor(transform_data) self._flip_segm_semantics_tensor(transform_data) def _flip_iuv_semantics_tensor(self, dp_transform_data: DensePoseTransformData) -> None: point_label_symmetries = dp_transform_data.point_label_symmetries uv_symmetries = dp_transform_data.uv_symmetries N, C, H, W = self.U.shape u_loc = (self.U[:, 1:, :, :].clamp(0, 1) * 255).long() v_loc = (self.V[:, 1:, :, :].clamp(0, 1) * 255).long() Iindex = torch.arange(C - 1, device=self.U.device)[None, :, None, None].expand( N, C - 1, H, W ) self.U[:, 1:, :, :] = uv_symmetries["U_transforms"][Iindex, v_loc, u_loc] self.V[:, 1:, :, :] = uv_symmetries["V_transforms"][Iindex, v_loc, u_loc] for el in "IUV": self.__dict__[el] = self.__dict__[el][:, point_label_symmetries, :, :] def _flip_segm_semantics_tensor(self, dp_transform_data): if self.S.shape[1] == DensePoseDataRelative.N_BODY_PARTS + 1: self.S = self.S[:, dp_transform_data.mask_label_symmetries, :, :] def to_result(self, boxes_xywh): """ Convert DensePose outputs to results format. Results are more compact, but cannot be resampled any more """ result = DensePoseResult(boxes_xywh, self.S, self.I, self.U, self.V) return result def __getitem__(self, item): if isinstance(item, int): S_selected = self.S[item].unsqueeze(0) I_selected = self.I[item].unsqueeze(0) U_selected = self.U[item].unsqueeze(0) V_selected = self.V[item].unsqueeze(0) conf_selected = {} for key in self.confidences: conf_selected[key] = self.confidences[key][item].unsqueeze(0) else: S_selected = self.S[item] I_selected = self.I[item] U_selected = self.U[item] V_selected = self.V[item] conf_selected = {} for key in self.confidences: conf_selected[key] = self.confidences[key][item] return DensePoseOutput(S_selected, I_selected, U_selected, V_selected, conf_selected) def __str__(self): s = "DensePoseOutput S {}, I {}, U {}, V {}".format( list(self.S.size()), list(self.I.size()), list(self.U.size()), list(self.V.size()) ) s_conf = "confidences: [{}]".format( ", ".join([f"{key} {list(self.confidences[key].size())}" for key in self.confidences]) ) return ", ".join([s, s_conf]) def __len__(self): return self.S.size(0) def resample_output_to_bbox( output: DensePoseOutput, bbox_xywh_abs: List[int], confidences: Optional[List[str]] = None ) -> Tuple[torch.Tensor, torch.Tensor]: """ Convert DensePose output of size [1, C, S, S] into DensePose results [D, H_i, W_i], where `i` is detection index and `D == 2 + len(confidences)`. This conversion: - resamples data to the detection bounding box size (H_i, W_i), - sets label for each pixel of the bounding box as the `argmax` of scores, - assigns values (U, V, confidences) based on label and resampled data Args: output (DensePoseOutput): outputs of the DensePose model bbox_xywh_abs (List[int]): bounding box, a list of 4 integer values XYWH confidences (List[str]): optional list of `str` that specifies confidence channels to be resampled and added to the results Results: labels (torch.Tensor): tensor [1, H_i, W_i] of `torch.uint8` containing fine segmentation labels of each pixel data (torch.Tensor): tensor [D, H_i, W_i] of `torch.float32` containing for each pixel the estimated U, V coordinates and the requested confidence values in the order that corresponds to `confidences` """ x, y, w, h = bbox_xywh_abs w = max(int(w), 1) h = max(int(h), 1) N_out = 2 if confidences is None else 2 + len(confidences) device = output.U.device data = torch.zeros([N_out, h, w], dtype=torch.float32, device=device) # coarse segmentation assert ( len(output.S.size()) == 4 ), "AnnIndex tensor size should have {} dimensions but has {}".format(4, len(output.S.size())) s_bbox = F.interpolate(output.S, (h, w), mode="bilinear", align_corners=False).argmax(dim=1) # fine segmentation assert ( len(output.I.size()) == 4 ), "IndexUV tensor size should have {} dimensions but has {}".format(4, len(output.S.size())) labels = ( F.interpolate(output.I, (h, w), mode="bilinear", align_corners=False).argmax(dim=1) * (s_bbox > 0).long() ).squeeze(0) # U assert len(output.U.size()) == 4, "U tensor size should have {} dimensions but has {}".format( 4, len(output.U.size()) ) u_bbox = F.interpolate(output.U, (h, w), mode="bilinear", align_corners=False) # V assert len(output.V.size()) == 4, "V tensor size should have {} dimensions but has {}".format( 4, len(output.V.size()) ) v_bbox = F.interpolate(output.V, (h, w), mode="bilinear", align_corners=False) # confidences if confidences is not None: resampled_confidence = {} for key in output.confidences: resampled_confidence[key] = F.interpolate( output.confidences[key], (h, w), mode="bilinear", align_corners=False ) # assign data from channels that correspond to the labels for part_id in range(1, u_bbox.size(1)): data[0][labels == part_id] = u_bbox[0, part_id][labels == part_id] data[1][labels == part_id] = v_bbox[0, part_id][labels == part_id] if confidences is None: continue for i, key in enumerate(confidences): if resampled_confidence[key].size(1) != u_bbox.size(1): # confidence is not part-based, don't try to fill it part by part continue data[2 + i][labels == part_id] = resampled_confidence[key][0, part_id][ labels == part_id ] if confidences is not None: for i, key in enumerate(confidences): if resampled_confidence[key].size(1) != u_bbox.size(1): # confidence is not part-based, fill the data with the first channel # (targeted for segmentation confidences that have only 1 channel) data[2 + i] = resampled_confidence[key][0, 0] return labels.unsqueeze(0), data class DensePoseResult(object): def __init__(self, boxes_xywh, S, I, U, V): self.results = [] self.boxes_xywh = boxes_xywh.cpu().tolist() assert len(boxes_xywh.size()) == 2 assert boxes_xywh.size(1) == 4 for i, box_xywh in enumerate(boxes_xywh): result_i = self._output_to_result(box_xywh, S[[i]], I[[i]], U[[i]], V[[i]]) result_numpy_i = result_i.cpu().numpy() result_encoded_i = DensePoseResult.encode_png_data(result_numpy_i) result_encoded_with_shape_i = (result_numpy_i.shape, result_encoded_i) self.results.append(result_encoded_with_shape_i) def __str__(self): s = "DensePoseResult: N={} [{}]".format( len(self.results), ", ".join([str(list(r[0])) for r in self.results]) ) return s def _output_to_result(self, box_xywh, S, I, U, V): # TODO: reuse resample_output_to_bbox x, y, w, h = box_xywh w = max(int(w), 1) h = max(int(h), 1) result = torch.zeros([3, h, w], dtype=torch.uint8, device=U.device) assert ( len(S.size()) == 4 ), "AnnIndex tensor size should have {} " "dimensions but has {}".format(4, len(S.size())) s_bbox = F.interpolate(S, (h, w), mode="bilinear", align_corners=False).argmax(dim=1) assert ( len(I.size()) == 4 ), "IndexUV tensor size should have {} " "dimensions but has {}".format(4, len(S.size())) i_bbox = ( F.interpolate(I, (h, w), mode="bilinear", align_corners=False).argmax(dim=1) * (s_bbox > 0).long() ).squeeze(0) assert len(U.size()) == 4, "U tensor size should have {} " "dimensions but has {}".format( 4, len(U.size()) ) u_bbox = F.interpolate(U, (h, w), mode="bilinear", align_corners=False) assert len(V.size()) == 4, "V tensor size should have {} " "dimensions but has {}".format( 4, len(V.size()) ) v_bbox = F.interpolate(V, (h, w), mode="bilinear", align_corners=False) result[0] = i_bbox for part_id in range(1, u_bbox.size(1)): result[1][i_bbox == part_id] = ( (u_bbox[0, part_id][i_bbox == part_id] * 255).clamp(0, 255).to(torch.uint8) ) result[2][i_bbox == part_id] = ( (v_bbox[0, part_id][i_bbox == part_id] * 255).clamp(0, 255).to(torch.uint8) ) assert ( result.size(1) == h ), "Results height {} should be equal" "to bounding box height {}".format(result.size(1), h) assert ( result.size(2) == w ), "Results width {} should be equal" "to bounding box width {}".format(result.size(2), w) return result @staticmethod def encode_png_data(arr): """ Encode array data as a PNG image using the highest compression rate @param arr [in] Data stored in an array of size (3, M, N) of type uint8 @return Base64-encoded string containing PNG-compressed data """ assert len(arr.shape) == 3, "Expected a 3D array as an input," " got a {0}D array".format( len(arr.shape) ) assert arr.shape[0] == 3, "Expected first array dimension of size 3," " got {0}".format( arr.shape[0] ) assert arr.dtype == np.uint8, "Expected an array of type np.uint8, " " got {0}".format( arr.dtype ) data = np.moveaxis(arr, 0, -1) im = Image.fromarray(data) fstream = BytesIO() im.save(fstream, format="png", optimize=True) s = base64.encodebytes(fstream.getvalue()).decode() return s @staticmethod def decode_png_data(shape, s): """ Decode array data from a string that contains PNG-compressed data @param Base64-encoded string containing PNG-compressed data @return Data stored in an array of size (3, M, N) of type uint8 """ fstream = BytesIO(base64.decodebytes(s.encode())) im = Image.open(fstream) data = np.moveaxis(np.array(im.getdata(), dtype=np.uint8), -1, 0) return data.reshape(shape) def __len__(self): return len(self.results) def __getitem__(self, item): result_encoded = self.results[item] bbox_xywh = self.boxes_xywh[item] return result_encoded, bbox_xywh class DensePoseList(object): _TORCH_DEVICE_CPU = torch.device("cpu") def __init__(self, densepose_datas, boxes_xyxy_abs, image_size_hw, device=_TORCH_DEVICE_CPU): assert len(densepose_datas) == len( boxes_xyxy_abs ), "Attempt to initialize DensePoseList with {} DensePose datas " "and {} boxes".format( len(densepose_datas), len(boxes_xyxy_abs) ) self.densepose_datas = [] for densepose_data in densepose_datas: assert isinstance(densepose_data, DensePoseDataRelative) or densepose_data is None, ( "Attempt to initialize DensePoseList with DensePose datas " "of type {}, expected DensePoseDataRelative".format(type(densepose_data)) ) densepose_data_ondevice = ( densepose_data.to(device) if densepose_data is not None else None ) self.densepose_datas.append(densepose_data_ondevice) self.boxes_xyxy_abs = boxes_xyxy_abs.to(device) self.image_size_hw = image_size_hw self.device = device def to(self, device): if self.device == device: return self return DensePoseList(self.densepose_datas, self.boxes_xyxy_abs, self.image_size_hw, device) def __iter__(self): return iter(self.densepose_datas) def __len__(self): return len(self.densepose_datas) def __repr__(self): s = self.__class__.__name__ + "(" s += "num_instances={}, ".format(len(self.densepose_datas)) s += "image_width={}, ".format(self.image_size_hw[1]) s += "image_height={})".format(self.image_size_hw[0]) return s def __getitem__(self, item): if isinstance(item, int): densepose_data_rel = self.densepose_datas[item] return densepose_data_rel elif isinstance(item, slice): densepose_datas_rel = self.densepose_datas[item] boxes_xyxy_abs = self.boxes_xyxy_abs[item] return DensePoseList( densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device ) elif isinstance(item, torch.Tensor) and (item.dtype == torch.bool): densepose_datas_rel = [self.densepose_datas[i] for i, x in enumerate(item) if x > 0] boxes_xyxy_abs = self.boxes_xyxy_abs[item] return DensePoseList( densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device ) else: densepose_datas_rel = [self.densepose_datas[i] for i in item] boxes_xyxy_abs = self.boxes_xyxy_abs[item] return DensePoseList( densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device )