mirror of https://github.com/RE-OWOD/RE-OWOD
221 lines
7.7 KiB
Python
221 lines
7.7 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
import atexit
|
|
import bisect
|
|
import multiprocessing as mp
|
|
from collections import deque
|
|
import cv2
|
|
import torch
|
|
|
|
from detectron2.data import MetadataCatalog
|
|
from detectron2.engine.defaults import DefaultPredictor
|
|
from detectron2.utils.video_visualizer import VideoVisualizer
|
|
from detectron2.utils.visualizer import ColorMode, Visualizer
|
|
|
|
|
|
class VisualizationDemo(object):
|
|
def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False):
|
|
"""
|
|
Args:
|
|
cfg (CfgNode):
|
|
instance_mode (ColorMode):
|
|
parallel (bool): whether to run the model in different processes from visualization.
|
|
Useful since the visualization logic can be slow.
|
|
"""
|
|
self.metadata = MetadataCatalog.get(
|
|
cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
|
|
)
|
|
self.cpu_device = torch.device("cpu")
|
|
self.instance_mode = instance_mode
|
|
|
|
self.parallel = parallel
|
|
if parallel:
|
|
num_gpu = torch.cuda.device_count()
|
|
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu)
|
|
else:
|
|
self.predictor = DefaultPredictor(cfg)
|
|
|
|
def run_on_image(self, image):
|
|
"""
|
|
Args:
|
|
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
|
|
This is the format used by OpenCV.
|
|
|
|
Returns:
|
|
predictions (dict): the output of the model.
|
|
vis_output (VisImage): the visualized image output.
|
|
"""
|
|
vis_output = None
|
|
predictions = self.predictor(image)
|
|
# Convert image from OpenCV BGR format to Matplotlib RGB format.
|
|
image = image[:, :, ::-1]
|
|
visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode)
|
|
if "panoptic_seg" in predictions:
|
|
panoptic_seg, segments_info = predictions["panoptic_seg"]
|
|
vis_output = visualizer.draw_panoptic_seg_predictions(
|
|
panoptic_seg.to(self.cpu_device), segments_info
|
|
)
|
|
else:
|
|
if "sem_seg" in predictions:
|
|
vis_output = visualizer.draw_sem_seg(
|
|
predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
|
|
)
|
|
if "instances" in predictions:
|
|
instances = predictions["instances"].to(self.cpu_device)
|
|
vis_output = visualizer.draw_instance_predictions(predictions=instances)
|
|
|
|
return predictions, vis_output
|
|
|
|
def _frame_from_video(self, video):
|
|
while video.isOpened():
|
|
success, frame = video.read()
|
|
if success:
|
|
yield frame
|
|
else:
|
|
break
|
|
|
|
def run_on_video(self, video):
|
|
"""
|
|
Visualizes predictions on frames of the input video.
|
|
|
|
Args:
|
|
video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be
|
|
either a webcam or a video file.
|
|
|
|
Yields:
|
|
ndarray: BGR visualizations of each video frame.
|
|
"""
|
|
video_visualizer = VideoVisualizer(self.metadata, self.instance_mode)
|
|
|
|
def process_predictions(frame, predictions):
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
if "panoptic_seg" in predictions:
|
|
panoptic_seg, segments_info = predictions["panoptic_seg"]
|
|
vis_frame = video_visualizer.draw_panoptic_seg_predictions(
|
|
frame, panoptic_seg.to(self.cpu_device), segments_info
|
|
)
|
|
elif "instances" in predictions:
|
|
predictions = predictions["instances"].to(self.cpu_device)
|
|
vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
|
|
elif "sem_seg" in predictions:
|
|
vis_frame = video_visualizer.draw_sem_seg(
|
|
frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
|
|
)
|
|
|
|
# Converts Matplotlib RGB format to OpenCV BGR format
|
|
vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR)
|
|
return vis_frame
|
|
|
|
frame_gen = self._frame_from_video(video)
|
|
if self.parallel:
|
|
buffer_size = self.predictor.default_buffer_size
|
|
|
|
frame_data = deque()
|
|
|
|
for cnt, frame in enumerate(frame_gen):
|
|
frame_data.append(frame)
|
|
self.predictor.put(frame)
|
|
|
|
if cnt >= buffer_size:
|
|
frame = frame_data.popleft()
|
|
predictions = self.predictor.get()
|
|
yield process_predictions(frame, predictions)
|
|
|
|
while len(frame_data):
|
|
frame = frame_data.popleft()
|
|
predictions = self.predictor.get()
|
|
yield process_predictions(frame, predictions)
|
|
else:
|
|
for frame in frame_gen:
|
|
yield process_predictions(frame, self.predictor(frame))
|
|
|
|
|
|
class AsyncPredictor:
|
|
"""
|
|
A predictor that runs the model asynchronously, possibly on >1 GPUs.
|
|
Because rendering the visualization takes considerably amount of time,
|
|
this helps improve throughput a little bit when rendering videos.
|
|
"""
|
|
|
|
class _StopToken:
|
|
pass
|
|
|
|
class _PredictWorker(mp.Process):
|
|
def __init__(self, cfg, task_queue, result_queue):
|
|
self.cfg = cfg
|
|
self.task_queue = task_queue
|
|
self.result_queue = result_queue
|
|
super().__init__()
|
|
|
|
def run(self):
|
|
predictor = DefaultPredictor(self.cfg)
|
|
|
|
while True:
|
|
task = self.task_queue.get()
|
|
if isinstance(task, AsyncPredictor._StopToken):
|
|
break
|
|
idx, data = task
|
|
result = predictor(data)
|
|
self.result_queue.put((idx, result))
|
|
|
|
def __init__(self, cfg, num_gpus: int = 1):
|
|
"""
|
|
Args:
|
|
cfg (CfgNode):
|
|
num_gpus (int): if 0, will run on CPU
|
|
"""
|
|
num_workers = max(num_gpus, 1)
|
|
self.task_queue = mp.Queue(maxsize=num_workers * 3)
|
|
self.result_queue = mp.Queue(maxsize=num_workers * 3)
|
|
self.procs = []
|
|
for gpuid in range(max(num_gpus, 1)):
|
|
cfg = cfg.clone()
|
|
cfg.defrost()
|
|
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
|
|
self.procs.append(
|
|
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
|
|
)
|
|
|
|
self.put_idx = 0
|
|
self.get_idx = 0
|
|
self.result_rank = []
|
|
self.result_data = []
|
|
|
|
for p in self.procs:
|
|
p.start()
|
|
atexit.register(self.shutdown)
|
|
|
|
def put(self, image):
|
|
self.put_idx += 1
|
|
self.task_queue.put((self.put_idx, image))
|
|
|
|
def get(self):
|
|
self.get_idx += 1 # the index needed for this request
|
|
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
|
|
res = self.result_data[0]
|
|
del self.result_data[0], self.result_rank[0]
|
|
return res
|
|
|
|
while True:
|
|
# make sure the results are returned in the correct order
|
|
idx, res = self.result_queue.get()
|
|
if idx == self.get_idx:
|
|
return res
|
|
insert = bisect.bisect(self.result_rank, idx)
|
|
self.result_rank.insert(insert, idx)
|
|
self.result_data.insert(insert, res)
|
|
|
|
def __len__(self):
|
|
return self.put_idx - self.get_idx
|
|
|
|
def __call__(self, image):
|
|
self.put(image)
|
|
return self.get()
|
|
|
|
def shutdown(self):
|
|
for _ in self.procs:
|
|
self.task_queue.put(AsyncPredictor._StopToken())
|
|
|
|
@property
|
|
def default_buffer_size(self):
|
|
return len(self.procs) * 5
|