RE-OWOD/tests/structures/test_imagelist.py

60 lines
2.0 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import unittest
from typing import List, Sequence, Tuple
import torch
from detectron2.structures import ImageList
from detectron2.utils.env import TORCH_VERSION
class TestImageList(unittest.TestCase):
def test_imagelist_padding_shape(self):
class TensorToImageList(torch.nn.Module):
def forward(self, tensors: Sequence[torch.Tensor]):
return ImageList.from_tensors(tensors, 4).tensor
func = torch.jit.trace(
TensorToImageList(), ([torch.ones((3, 10, 10), dtype=torch.float32)],)
)
ret = func([torch.ones((3, 15, 20), dtype=torch.float32)])
self.assertEqual(list(ret.shape), [1, 3, 16, 20], str(ret.shape))
func = torch.jit.trace(
TensorToImageList(),
(
[
torch.ones((3, 16, 10), dtype=torch.float32),
torch.ones((3, 13, 11), dtype=torch.float32),
],
),
)
ret = func(
[
torch.ones((3, 25, 20), dtype=torch.float32),
torch.ones((3, 10, 10), dtype=torch.float32),
]
)
# does not support calling with different #images
self.assertEqual(list(ret.shape), [2, 3, 28, 20], str(ret.shape))
@unittest.skipIf(TORCH_VERSION < (1, 6), "Insufficient pytorch version")
def test_imagelist_scriptability(self):
image_nums = 2
image_tensor = torch.randn((image_nums, 10, 20), dtype=torch.float32)
image_shape = [(10, 20)] * image_nums
def f(image_tensor, image_shape: List[Tuple[int, int]]):
return ImageList(image_tensor, image_shape)
ret = f(image_tensor, image_shape)
ret_script = torch.jit.script(f)(image_tensor, image_shape)
self.assertEqual(len(ret), len(ret_script))
for i in range(image_nums):
self.assertTrue(torch.equal(ret[i], ret_script[i]))
if __name__ == "__main__":
unittest.main()