mirror of https://github.com/RE-OWOD/RE-OWOD
325 lines
11 KiB
Python
325 lines
11 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
import contextlib
|
|
import io
|
|
import logging
|
|
import os
|
|
from collections import defaultdict
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, Iterable, List, Optional
|
|
from fvcore.common.file_io import PathManager
|
|
from fvcore.common.timer import Timer
|
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog
|
|
from detectron2.structures import BoxMode
|
|
|
|
from ..utils import maybe_prepend_base_path
|
|
|
|
DENSEPOSE_MASK_KEY = "dp_masks"
|
|
DENSEPOSE_KEYS_WITHOUT_MASK = ["dp_x", "dp_y", "dp_I", "dp_U", "dp_V"]
|
|
DENSEPOSE_KEYS = DENSEPOSE_KEYS_WITHOUT_MASK + [DENSEPOSE_MASK_KEY]
|
|
DENSEPOSE_METADATA_URL_PREFIX = "https://dl.fbaipublicfiles.com/densepose/data/"
|
|
|
|
|
|
@dataclass
|
|
class CocoDatasetInfo:
|
|
name: str
|
|
images_root: str
|
|
annotations_fpath: str
|
|
|
|
|
|
DATASETS = [
|
|
CocoDatasetInfo(
|
|
name="densepose_coco_2014_train",
|
|
images_root="coco/train2014",
|
|
annotations_fpath="coco/annotations/densepose_train2014.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="densepose_coco_2014_minival",
|
|
images_root="coco/val2014",
|
|
annotations_fpath="coco/annotations/densepose_minival2014.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="densepose_coco_2014_minival_100",
|
|
images_root="coco/val2014",
|
|
annotations_fpath="coco/annotations/densepose_minival2014_100.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="densepose_coco_2014_valminusminival",
|
|
images_root="coco/val2014",
|
|
annotations_fpath="coco/annotations/densepose_valminusminival2014.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="densepose_chimps",
|
|
images_root="densepose_evolution/densepose_chimps",
|
|
annotations_fpath="densepose_evolution/annotations/densepose_chimps_densepose.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="posetrack2017_train",
|
|
images_root="posetrack2017/posetrack_data_2017",
|
|
annotations_fpath="posetrack2017/densepose_posetrack_train2017.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="posetrack2017_val",
|
|
images_root="posetrack2017/posetrack_data_2017",
|
|
annotations_fpath="posetrack2017/densepose_posetrack_val2017.json",
|
|
),
|
|
]
|
|
|
|
|
|
BASE_DATASETS = [
|
|
CocoDatasetInfo(
|
|
name="base_coco_2017_train",
|
|
images_root="coco/train2017",
|
|
annotations_fpath="coco/annotations/instances_train2017.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="base_coco_2017_val",
|
|
images_root="coco/val2017",
|
|
annotations_fpath="coco/annotations/instances_val2017.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="base_coco_2017_val_100",
|
|
images_root="coco/val2017",
|
|
annotations_fpath="coco/annotations/instances_val2017_100.json",
|
|
),
|
|
]
|
|
|
|
|
|
def get_metadata(base_path: Optional[os.PathLike]) -> Dict[str, Any]:
|
|
"""
|
|
Returns metadata associated with COCO DensePose datasets
|
|
|
|
Args:
|
|
base_path: Optional[os.PathLike]
|
|
Base path used to load metadata from
|
|
|
|
Returns:
|
|
Dict[str, Any]
|
|
Metadata in the form of a dictionary
|
|
"""
|
|
meta = {
|
|
"densepose_transform_src": maybe_prepend_base_path(base_path, "UV_symmetry_transforms.mat"),
|
|
"densepose_smpl_subdiv": maybe_prepend_base_path(base_path, "SMPL_subdiv.mat"),
|
|
"densepose_smpl_subdiv_transform": maybe_prepend_base_path(
|
|
base_path, "SMPL_SUBDIV_TRANSFORM.mat"
|
|
),
|
|
}
|
|
return meta
|
|
|
|
|
|
def _load_coco_annotations(json_file: str):
|
|
"""
|
|
Load COCO annotations from a JSON file
|
|
|
|
Args:
|
|
json_file: str
|
|
Path to the file to load annotations from
|
|
Returns:
|
|
Instance of `pycocotools.coco.COCO` that provides access to annotations
|
|
data
|
|
"""
|
|
from pycocotools.coco import COCO
|
|
|
|
logger = logging.getLogger(__name__)
|
|
timer = Timer()
|
|
with contextlib.redirect_stdout(io.StringIO()):
|
|
coco_api = COCO(json_file)
|
|
if timer.seconds() > 1:
|
|
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
|
|
return coco_api
|
|
|
|
|
|
def _add_categories_metadata(dataset_name: str, categories: Dict[str, Any]):
|
|
meta = MetadataCatalog.get(dataset_name)
|
|
meta.categories = {c["id"]: c["name"] for c in categories}
|
|
logger = logging.getLogger(__name__)
|
|
logger.info("Dataset {} categories: {}".format(dataset_name, categories))
|
|
|
|
|
|
def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]):
|
|
if "minival" in json_file:
|
|
# Skip validation on COCO2014 valminusminival and minival annotations
|
|
# The ratio of buggy annotations there is tiny and does not affect accuracy
|
|
# Therefore we explicitly white-list them
|
|
return
|
|
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
|
|
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format(
|
|
json_file
|
|
)
|
|
|
|
|
|
def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
|
|
if "bbox" not in ann_dict:
|
|
return
|
|
obj["bbox"] = ann_dict["bbox"]
|
|
obj["bbox_mode"] = BoxMode.XYWH_ABS
|
|
|
|
|
|
def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
|
|
if "segmentation" not in ann_dict:
|
|
return
|
|
segm = ann_dict["segmentation"]
|
|
if not isinstance(segm, dict):
|
|
# filter out invalid polygons (< 3 points)
|
|
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
|
|
if len(segm) == 0:
|
|
return
|
|
obj["segmentation"] = segm
|
|
|
|
|
|
def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
|
|
if "keypoints" not in ann_dict:
|
|
return
|
|
keypts = ann_dict["keypoints"] # list[int]
|
|
for idx, v in enumerate(keypts):
|
|
if idx % 3 != 2:
|
|
# COCO's segmentation coordinates are floating points in [0, H or W],
|
|
# but keypoint coordinates are integers in [0, H-1 or W-1]
|
|
# Therefore we assume the coordinates are "pixel indices" and
|
|
# add 0.5 to convert to floating point coordinates.
|
|
keypts[idx] = v + 0.5
|
|
obj["keypoints"] = keypts
|
|
|
|
|
|
def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
|
|
for key in DENSEPOSE_KEYS:
|
|
if key in ann_dict:
|
|
obj[key] = ann_dict[key]
|
|
|
|
|
|
def _combine_images_with_annotations(
|
|
dataset_name: str,
|
|
image_root: str,
|
|
img_datas: Iterable[Dict[str, Any]],
|
|
ann_datas: Iterable[Iterable[Dict[str, Any]]],
|
|
):
|
|
|
|
ann_keys = ["iscrowd", "category_id"]
|
|
dataset_dicts = []
|
|
contains_video_frame_info = False
|
|
|
|
for img_dict, ann_dicts in zip(img_datas, ann_datas):
|
|
record = {}
|
|
record["file_name"] = os.path.join(image_root, img_dict["file_name"])
|
|
record["height"] = img_dict["height"]
|
|
record["width"] = img_dict["width"]
|
|
record["image_id"] = img_dict["id"]
|
|
record["dataset"] = dataset_name
|
|
if "frame_id" in img_dict:
|
|
record["frame_id"] = img_dict["frame_id"]
|
|
record["video_id"] = img_dict.get("vid_id", None)
|
|
contains_video_frame_info = True
|
|
objs = []
|
|
for ann_dict in ann_dicts:
|
|
assert ann_dict["image_id"] == record["image_id"]
|
|
assert ann_dict.get("ignore", 0) == 0
|
|
obj = {key: ann_dict[key] for key in ann_keys if key in ann_dict}
|
|
_maybe_add_bbox(obj, ann_dict)
|
|
_maybe_add_segm(obj, ann_dict)
|
|
_maybe_add_keypoints(obj, ann_dict)
|
|
_maybe_add_densepose(obj, ann_dict)
|
|
objs.append(obj)
|
|
record["annotations"] = objs
|
|
dataset_dicts.append(record)
|
|
if contains_video_frame_info:
|
|
create_video_frame_mapping(dataset_name, dataset_dicts)
|
|
return dataset_dicts
|
|
|
|
|
|
def create_video_frame_mapping(dataset_name, dataset_dicts):
|
|
mapping = defaultdict(dict)
|
|
for d in dataset_dicts:
|
|
video_id = d.get("video_id")
|
|
if video_id is None:
|
|
continue
|
|
mapping[video_id].update({d["frame_id"]: d["file_name"]})
|
|
MetadataCatalog.get(dataset_name).set(video_frame_mapping=mapping)
|
|
|
|
|
|
def load_coco_json(annotations_json_file: str, image_root: str, dataset_name: str):
|
|
"""
|
|
Loads a JSON file with annotations in COCO instances format.
|
|
Replaces `detectron2.data.datasets.coco.load_coco_json` to handle metadata
|
|
in a more flexible way. Postpones category mapping to a later stage to be
|
|
able to combine several datasets with different (but coherent) sets of
|
|
categories.
|
|
|
|
Args:
|
|
|
|
annotations_json_file: str
|
|
Path to the JSON file with annotations in COCO instances format.
|
|
image_root: str
|
|
directory that contains all the images
|
|
dataset_name: str
|
|
the name that identifies a dataset, e.g. "densepose_coco_2014_train"
|
|
extra_annotation_keys: Optional[List[str]]
|
|
If provided, these keys are used to extract additional data from
|
|
the annotations.
|
|
"""
|
|
coco_api = _load_coco_annotations(PathManager.get_local_path(annotations_json_file))
|
|
_add_categories_metadata(dataset_name, coco_api.loadCats(coco_api.getCatIds()))
|
|
# sort indices for reproducible results
|
|
img_ids = sorted(coco_api.imgs.keys())
|
|
# imgs is a list of dicts, each looks something like:
|
|
# {'license': 4,
|
|
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
|
|
# 'file_name': 'COCO_val2014_000000001268.jpg',
|
|
# 'height': 427,
|
|
# 'width': 640,
|
|
# 'date_captured': '2013-11-17 05:57:24',
|
|
# 'id': 1268}
|
|
imgs = coco_api.loadImgs(img_ids)
|
|
logger = logging.getLogger(__name__)
|
|
logger.info("Loaded {} images in COCO format from {}".format(len(imgs), annotations_json_file))
|
|
# anns is a list[list[dict]], where each dict is an annotation
|
|
# record for an object. The inner list enumerates the objects in an image
|
|
# and the outer list enumerates over images.
|
|
anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
|
|
_verify_annotations_have_unique_ids(annotations_json_file, anns)
|
|
dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns)
|
|
return dataset_records
|
|
|
|
|
|
def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[os.PathLike] = None):
|
|
"""
|
|
Registers provided COCO DensePose dataset
|
|
|
|
Args:
|
|
dataset_data: CocoDatasetInfo
|
|
Dataset data
|
|
datasets_root: Optional[os.PathLike]
|
|
Datasets root folder (default: None)
|
|
"""
|
|
annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath)
|
|
images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root)
|
|
|
|
def load_annotations():
|
|
return load_coco_json(
|
|
annotations_json_file=annotations_fpath,
|
|
image_root=images_root,
|
|
dataset_name=dataset_data.name,
|
|
)
|
|
|
|
DatasetCatalog.register(dataset_data.name, load_annotations)
|
|
MetadataCatalog.get(dataset_data.name).set(
|
|
json_file=annotations_fpath,
|
|
image_root=images_root,
|
|
**get_metadata(DENSEPOSE_METADATA_URL_PREFIX)
|
|
)
|
|
|
|
|
|
def register_datasets(
|
|
datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[os.PathLike] = None
|
|
):
|
|
"""
|
|
Registers provided COCO DensePose datasets
|
|
|
|
Args:
|
|
datasets_data: Iterable[CocoDatasetInfo]
|
|
An iterable of dataset datas
|
|
datasets_root: Optional[os.PathLike]
|
|
Datasets root folder (default: None)
|
|
"""
|
|
for dataset_data in datasets_data:
|
|
register_dataset(dataset_data, datasets_root)
|