RE-OWOD/configs/Base-RCNN-C4-OWOD_FPN.yaml

54 lines
1.5 KiB
YAML

MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
RPN:
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
PRE_NMS_TOPK_TEST: 6000
POST_NMS_TOPK_TEST: 1000
ROI_HEADS:
# NUM_CLASSES: 81 # 0-79 Known class; 80 -> Unknown; 81 -> Background.
NUM_CLASSES: 81
IN_FEATURES: ["p2", "p3", "p4", "p5"]
NAME: "Res5ROIHeads"
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON: False
RESNETS:
DEPTH: 50
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
FPN:
IN_FEATURES: ["res2", "res3", "res4", "res5"]
ANCHOR_GENERATOR:
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_FC: 2
POOLER_RESOLUTION: 7
ROI_MASK_HEAD:
NAME: "MaskRCNNConvUpsampleHead"
NUM_CONV: 4
POOLER_RESOLUTION: 14
INPUT:
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
MIN_SIZE_TEST: 800
DATASETS:
TRAIN: ("coco_2017_train",)
TEST: ("coco_2017_val",)
SOLVER:
IMS_PER_BATCH: 16
BASE_LR: 0.02
STEPS: (60000, 80000)
MAX_ITER: 90000
VERSION: 2
OWOD:
ENABLE_THRESHOLD_AUTOLABEL_UNK: True
NUM_UNK_PER_IMAGE: 1
ENABLE_UNCERTAINITY_AUTOLABEL_UNK: False
ENABLE_CLUSTERING: True
FEATURE_STORE_SAVE_PATH: 'feature_store'
CLUSTERING:
ITEMS_PER_CLASS: 20
START_ITER: 0 #1000
UPDATE_MU_ITER: 3000
MOMENTUM: 0.99
Z_DIMENSION: 128