mirror of https://github.com/RE-OWOD/RE-OWOD
155 lines
5.2 KiB
Python
155 lines
5.2 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
|
|
"""
|
|
PointRend Training Script.
|
|
|
|
This script is a simplified version of the training script in detectron2/tools.
|
|
"""
|
|
|
|
import os
|
|
import torch
|
|
|
|
import detectron2.data.transforms as T
|
|
import detectron2.utils.comm as comm
|
|
from detectron2.checkpoint import DetectionCheckpointer
|
|
from detectron2.config import get_cfg
|
|
from detectron2.data import DatasetMapper, MetadataCatalog, build_detection_train_loader
|
|
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
|
|
from detectron2.evaluation import (
|
|
CityscapesInstanceEvaluator,
|
|
CityscapesSemSegEvaluator,
|
|
COCOEvaluator,
|
|
DatasetEvaluators,
|
|
LVISEvaluator,
|
|
SemSegEvaluator,
|
|
verify_results,
|
|
)
|
|
from detectron2.projects.point_rend import ColorAugSSDTransform, add_pointrend_config
|
|
|
|
|
|
def build_sem_seg_train_aug(cfg):
|
|
augs = [
|
|
T.ResizeShortestEdge(
|
|
cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
|
|
)
|
|
]
|
|
if cfg.INPUT.CROP.ENABLED:
|
|
augs.append(
|
|
T.RandomCrop_CategoryAreaConstraint(
|
|
cfg.INPUT.CROP.TYPE,
|
|
cfg.INPUT.CROP.SIZE,
|
|
cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA,
|
|
cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
|
)
|
|
)
|
|
if cfg.INPUT.COLOR_AUG_SSD:
|
|
augs.append(ColorAugSSDTransform(img_format=cfg.INPUT.FORMAT))
|
|
augs.append(T.RandomFlip())
|
|
return augs
|
|
|
|
|
|
class Trainer(DefaultTrainer):
|
|
"""
|
|
We use the "DefaultTrainer" which contains a number pre-defined logic for
|
|
standard training workflow. They may not work for you, especially if you
|
|
are working on a new research project. In that case you can use the cleaner
|
|
"SimpleTrainer", or write your own training loop.
|
|
"""
|
|
|
|
@classmethod
|
|
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
|
|
"""
|
|
Create evaluator(s) for a given dataset.
|
|
This uses the special metadata "evaluator_type" associated with each builtin dataset.
|
|
For your own dataset, you can simply create an evaluator manually in your
|
|
script and do not have to worry about the hacky if-else logic here.
|
|
"""
|
|
if output_folder is None:
|
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
|
|
evaluator_list = []
|
|
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
|
|
if evaluator_type == "lvis":
|
|
return LVISEvaluator(dataset_name, cfg, True, output_folder)
|
|
if evaluator_type == "coco":
|
|
return COCOEvaluator(dataset_name, cfg, True, output_folder)
|
|
if evaluator_type == "sem_seg":
|
|
return SemSegEvaluator(
|
|
dataset_name,
|
|
distributed=True,
|
|
num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
|
|
ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
|
output_dir=output_folder,
|
|
)
|
|
if evaluator_type == "cityscapes_instance":
|
|
assert (
|
|
torch.cuda.device_count() >= comm.get_rank()
|
|
), "CityscapesEvaluator currently do not work with multiple machines."
|
|
return CityscapesInstanceEvaluator(dataset_name)
|
|
if evaluator_type == "cityscapes_sem_seg":
|
|
assert (
|
|
torch.cuda.device_count() >= comm.get_rank()
|
|
), "CityscapesEvaluator currently do not work with multiple machines."
|
|
return CityscapesSemSegEvaluator(dataset_name)
|
|
if len(evaluator_list) == 0:
|
|
raise NotImplementedError(
|
|
"no Evaluator for the dataset {} with the type {}".format(
|
|
dataset_name, evaluator_type
|
|
)
|
|
)
|
|
if len(evaluator_list) == 1:
|
|
return evaluator_list[0]
|
|
return DatasetEvaluators(evaluator_list)
|
|
|
|
@classmethod
|
|
def build_train_loader(cls, cfg):
|
|
if "SemanticSegmentor" in cfg.MODEL.META_ARCHITECTURE:
|
|
mapper = DatasetMapper(cfg, is_train=True, augmentations=build_sem_seg_train_aug(cfg))
|
|
else:
|
|
mapper = None
|
|
return build_detection_train_loader(cfg, mapper=mapper)
|
|
|
|
|
|
def setup(args):
|
|
"""
|
|
Create configs and perform basic setups.
|
|
"""
|
|
cfg = get_cfg()
|
|
add_pointrend_config(cfg)
|
|
cfg.merge_from_file(args.config_file)
|
|
cfg.merge_from_list(args.opts)
|
|
cfg.freeze()
|
|
default_setup(cfg, args)
|
|
return cfg
|
|
|
|
|
|
def main(args):
|
|
cfg = setup(args)
|
|
|
|
if args.eval_only:
|
|
model = Trainer.build_model(cfg)
|
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
|
|
cfg.MODEL.WEIGHTS, resume=args.resume
|
|
)
|
|
res = Trainer.test(cfg, model)
|
|
if comm.is_main_process():
|
|
verify_results(cfg, res)
|
|
return res
|
|
|
|
trainer = Trainer(cfg)
|
|
trainer.resume_or_load(resume=args.resume)
|
|
return trainer.train()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = default_argument_parser().parse_args()
|
|
print("Command Line Args:", args)
|
|
launch(
|
|
main,
|
|
args.num_gpus,
|
|
num_machines=args.num_machines,
|
|
machine_rank=args.machine_rank,
|
|
dist_url=args.dist_url,
|
|
args=(args,),
|
|
)
|