RE-OWOD/projects/DensePose/doc/MODEL_ZOO.md

14 KiB

Model Zoo and Baselines

Introduction

We provide baselines trained with Detectron2 DensePose. The corresponding configuration files can be found in the configs directory. All models were trained on COCO train2014 + valminusminival2014 and evaluated on COCO minival2014. For the details on common settings in which baselines were trained, please check Detectron 2 Model Zoo.

License

All models available for download through this document are licensed under the Creative Commons Attribution-ShareAlike 3.0 license

COCO DensePose Baselines with DensePose-RCNN

Legacy Models

Baselines trained using schedules from Güler et al, 2018

Name lr
sched
train
time
(s/iter)
inference
time
(s/im)
train
mem
(GB)
box
AP
dp. AP
GPS
dp. AP
GPSm
model id download
R_50_FPN_s1x_legacy s1x 0.307 0.051 3.2 58.1 52.1 54.9 164832157 model | metrics
R_101_FPN_s1x_legacy s1x 0.390 0.063 4.3 59.5 53.2 56.1 164832182 model | metrics

Improved Baselines, Original Fully Convolutional Haad

These models use an improved training schedule and Panoptic FPN head from Kirillov et al, 2019.

Name lr
sched
train
time
(s/iter)
inference
time
(s/im)
train
mem
(GB)
box
AP
dp. AP
GPS
dp. AP
GPSm
model id download
R_50_FPN_s1x s1x 0.359 0.066 4.5 61.2 63.7 65.3 165712039 model | metrics
R_101_FPN_s1x s1x 0.428 0.079 5.8 62.3 64.5 66.4 165712084 model | metrics

Improved Baselines, DeepLabV3 Head

These models use an improved training schedule, Panoptic FPN head from Kirillov et al, 2019 and DeepLabV3 head from Chen et al, 2017.

Name lr
sched
train
time
(s/iter)
inference
time
(s/im)
train
mem
(GB)
box
AP
dp. AP
GPS
dp. AP
GPSm
model id download
R_50_FPN_DL_s1x s1x 0.392 0.070 6.7 61.1 65.6 66.8 165712097 model | metrics
R_101_FPN_DL_s1x s1x 0.478 0.083 7.0 62.3 66.3 67.7 165712116 model | metrics

Baselines with Confidence Estimation

These models perform additional estimation of confidence in regressed UV coodrinates, along the lines of Neverova et al., 2019.

Name lr
sched
train
time
(s/iter)
inference
time
(s/im)
train
mem
(GB)
box
AP
dp. AP
GPS
dp. AP
GPSm
model id download
R_50_FPN_WC1_s1x s1x 0.353 0.064 4.6 60.5 64.2 65.6 173862049 model | metrics
R_50_FPN_WC2_s1x s1x 0.364 0.066 4.8 60.7 64.2 65.7 173861455 model | metrics
R_50_FPN_DL_WC1_s1x s1x 0.397 0.068 6.7 61.1 65.8 67.1 173067973 model | metrics
R_50_FPN_DL_WC2_s1x s1x 0.410 0.070 6.8 60.8 65.6 66.7 173859335 model | metrics
R_101_FPN_WC1_s1x s1x 0.435 0.076 5.7 62.5 64.9 66.5 171402969 model | metrics
R_101_FPN_WC2_s1x s1x 0.450 0.078 5.7 62.3 64.8 66.6 173860702 model | metrics
R_101_FPN_DL_WC1_s1x s1x 0.479 0.081 7.9 62.0 66.2 67.4 173858525 model | metrics
R_101_FPN_DL_WC2_s1x s1x 0.491 0.082 7.6 61.7 65.9 67.3 173294801 model | metrics

Old Baselines

It is still possible to use some baselines from DensePose 1. Below are evaluation metrics for the baselines recomputed in the current framework:

Model bbox AP AP AP50 AP75 APm APl
ResNet50_FPN_s1x-e2e 54.673 48.894 84.963 50.717 43.132 50.433
ResNet101_FPN_s1x-e2e 56.032 51.088 86.250 55.057 46.542 52.563

Note: these scores are close, but not strictly equal to the ones reported in the DensePose 1 Model Zoo, which is due to small incompatibilities between the frameworks.