mirror of https://github.com/RE-OWOD/RE-OWOD
224 lines
7.8 KiB
Python
224 lines
7.8 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
import fvcore.nn.weight_init as weight_init
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from detectron2.layers import Conv2d, FrozenBatchNorm2d, get_norm
|
|
from detectron2.modeling import BACKBONE_REGISTRY, ResNet, ResNetBlockBase, make_stage
|
|
from detectron2.modeling.backbone.resnet import BasicStem, BottleneckBlock, DeformBottleneckBlock
|
|
|
|
from .trident_conv import TridentConv
|
|
|
|
__all__ = ["TridentBottleneckBlock", "make_trident_stage", "build_trident_resnet_backbone"]
|
|
|
|
|
|
class TridentBottleneckBlock(ResNetBlockBase):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
*,
|
|
bottleneck_channels,
|
|
stride=1,
|
|
num_groups=1,
|
|
norm="BN",
|
|
stride_in_1x1=False,
|
|
num_branch=3,
|
|
dilations=(1, 2, 3),
|
|
concat_output=False,
|
|
test_branch_idx=-1,
|
|
):
|
|
"""
|
|
Args:
|
|
num_branch (int): the number of branches in TridentNet.
|
|
dilations (tuple): the dilations of multiple branches in TridentNet.
|
|
concat_output (bool): if concatenate outputs of multiple branches in TridentNet.
|
|
Use 'True' for the last trident block.
|
|
"""
|
|
super().__init__(in_channels, out_channels, stride)
|
|
|
|
assert num_branch == len(dilations)
|
|
|
|
self.num_branch = num_branch
|
|
self.concat_output = concat_output
|
|
self.test_branch_idx = test_branch_idx
|
|
|
|
if in_channels != out_channels:
|
|
self.shortcut = Conv2d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False,
|
|
norm=get_norm(norm, out_channels),
|
|
)
|
|
else:
|
|
self.shortcut = None
|
|
|
|
stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
|
|
|
|
self.conv1 = Conv2d(
|
|
in_channels,
|
|
bottleneck_channels,
|
|
kernel_size=1,
|
|
stride=stride_1x1,
|
|
bias=False,
|
|
norm=get_norm(norm, bottleneck_channels),
|
|
)
|
|
|
|
self.conv2 = TridentConv(
|
|
bottleneck_channels,
|
|
bottleneck_channels,
|
|
kernel_size=3,
|
|
stride=stride_3x3,
|
|
paddings=dilations,
|
|
bias=False,
|
|
groups=num_groups,
|
|
dilations=dilations,
|
|
num_branch=num_branch,
|
|
test_branch_idx=test_branch_idx,
|
|
norm=get_norm(norm, bottleneck_channels),
|
|
)
|
|
|
|
self.conv3 = Conv2d(
|
|
bottleneck_channels,
|
|
out_channels,
|
|
kernel_size=1,
|
|
bias=False,
|
|
norm=get_norm(norm, out_channels),
|
|
)
|
|
|
|
for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
|
|
if layer is not None: # shortcut can be None
|
|
weight_init.c2_msra_fill(layer)
|
|
|
|
def forward(self, x):
|
|
num_branch = self.num_branch if self.training or self.test_branch_idx == -1 else 1
|
|
if not isinstance(x, list):
|
|
x = [x] * num_branch
|
|
out = [self.conv1(b) for b in x]
|
|
out = [F.relu_(b) for b in out]
|
|
|
|
out = self.conv2(out)
|
|
out = [F.relu_(b) for b in out]
|
|
|
|
out = [self.conv3(b) for b in out]
|
|
|
|
if self.shortcut is not None:
|
|
shortcut = [self.shortcut(b) for b in x]
|
|
else:
|
|
shortcut = x
|
|
|
|
out = [out_b + shortcut_b for out_b, shortcut_b in zip(out, shortcut)]
|
|
out = [F.relu_(b) for b in out]
|
|
if self.concat_output:
|
|
out = torch.cat(out)
|
|
return out
|
|
|
|
|
|
def make_trident_stage(block_class, num_blocks, first_stride, **kwargs):
|
|
"""
|
|
Create a resnet stage by creating many blocks for TridentNet.
|
|
"""
|
|
blocks = []
|
|
for i in range(num_blocks - 1):
|
|
blocks.append(block_class(stride=first_stride if i == 0 else 1, **kwargs))
|
|
kwargs["in_channels"] = kwargs["out_channels"]
|
|
blocks.append(block_class(stride=1, concat_output=True, **kwargs))
|
|
return blocks
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def build_trident_resnet_backbone(cfg, input_shape):
|
|
"""
|
|
Create a ResNet instance from config for TridentNet.
|
|
|
|
Returns:
|
|
ResNet: a :class:`ResNet` instance.
|
|
"""
|
|
# need registration of new blocks/stems?
|
|
norm = cfg.MODEL.RESNETS.NORM
|
|
stem = BasicStem(
|
|
in_channels=input_shape.channels,
|
|
out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS,
|
|
norm=norm,
|
|
)
|
|
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
|
|
|
|
if freeze_at >= 1:
|
|
for p in stem.parameters():
|
|
p.requires_grad = False
|
|
stem = FrozenBatchNorm2d.convert_frozen_batchnorm(stem)
|
|
|
|
# fmt: off
|
|
out_features = cfg.MODEL.RESNETS.OUT_FEATURES
|
|
depth = cfg.MODEL.RESNETS.DEPTH
|
|
num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
|
|
width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
|
|
bottleneck_channels = num_groups * width_per_group
|
|
in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
|
|
out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
|
|
stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1
|
|
res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION
|
|
deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE
|
|
deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED
|
|
deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS
|
|
num_branch = cfg.MODEL.TRIDENT.NUM_BRANCH
|
|
branch_dilations = cfg.MODEL.TRIDENT.BRANCH_DILATIONS
|
|
trident_stage = cfg.MODEL.TRIDENT.TRIDENT_STAGE
|
|
test_branch_idx = cfg.MODEL.TRIDENT.TEST_BRANCH_IDX
|
|
# fmt: on
|
|
assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)
|
|
|
|
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth]
|
|
|
|
stages = []
|
|
|
|
res_stage_idx = {"res2": 2, "res3": 3, "res4": 4, "res5": 5}
|
|
out_stage_idx = [res_stage_idx[f] for f in out_features]
|
|
trident_stage_idx = res_stage_idx[trident_stage]
|
|
max_stage_idx = max(out_stage_idx)
|
|
for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
|
|
dilation = res5_dilation if stage_idx == 5 else 1
|
|
first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
|
|
stage_kargs = {
|
|
"num_blocks": num_blocks_per_stage[idx],
|
|
"first_stride": first_stride,
|
|
"in_channels": in_channels,
|
|
"bottleneck_channels": bottleneck_channels,
|
|
"out_channels": out_channels,
|
|
"num_groups": num_groups,
|
|
"norm": norm,
|
|
"stride_in_1x1": stride_in_1x1,
|
|
"dilation": dilation,
|
|
}
|
|
if stage_idx == trident_stage_idx:
|
|
assert not deform_on_per_stage[
|
|
idx
|
|
], "Not support deformable conv in Trident blocks yet."
|
|
stage_kargs["block_class"] = TridentBottleneckBlock
|
|
stage_kargs["num_branch"] = num_branch
|
|
stage_kargs["dilations"] = branch_dilations
|
|
stage_kargs["test_branch_idx"] = test_branch_idx
|
|
stage_kargs.pop("dilation")
|
|
elif deform_on_per_stage[idx]:
|
|
stage_kargs["block_class"] = DeformBottleneckBlock
|
|
stage_kargs["deform_modulated"] = deform_modulated
|
|
stage_kargs["deform_num_groups"] = deform_num_groups
|
|
else:
|
|
stage_kargs["block_class"] = BottleneckBlock
|
|
blocks = (
|
|
make_trident_stage(**stage_kargs)
|
|
if stage_idx == trident_stage_idx
|
|
else make_stage(**stage_kargs)
|
|
)
|
|
in_channels = out_channels
|
|
out_channels *= 2
|
|
bottleneck_channels *= 2
|
|
|
|
if freeze_at >= stage_idx:
|
|
for block in blocks:
|
|
block.freeze()
|
|
stages.append(blocks)
|
|
return ResNet(stem, stages, out_features=out_features)
|